位置 > 首页 > 句子 >

数学初中全部重要知识点总结 40句菁华

日期:2022-12-03 00:00:00

1、一元二次方程的二次函数的关系

2、一元二次方程的解法

3、韦达定理

4、同角或等角的补角相等

5、*行公理:经过直线外一点,有且只有一条直线与这条直线*行

6、内错角相等,两直线*行

7、同旁内角互补,两直线*行

8、推论3

9、角边角公理(

10、斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等

11、角的*分线是到角的两边距离相等的所有点的集合

12、推论2等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合,即三线合一;

13、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

14、逆定理

15、勾股定理

16、矩形性质定理2

17、菱形判定定理2

18、等腰梯形的两条对角线相等

19、梯形中位线定理

20、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

21、*行线分线段成比例定理

22、性质定理3

23、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)

24、圆的内部可以看作是圆心的距离小于半径的点的集合

25、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线

26、到已知角的两边距离相等的点的轨迹,是这个角的*分线

27、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线

28、垂径定理

29、切线长定理

30、正三角形面积√3a^2/4

31、圆的有关性质

32、菱形的性质:⑴矩形具有*行四边形的一切性质;

33、公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

34、提取公因式步骤:①确定公因式。②确定商式③公因式与商式写成积的形式。

35、联系:二者之间存在着从属关系;存在条件相同;0的算术*方根与*方根都是0

36、含根号式子的意义:表示a的*方根,表示a的算术*方根,表示a的负的*方根。

37、有理数减法法则:减去一个数,等于加上这个数的相反数;即a—b=a+(—b)。

38、有理数乘法法则:

39、有理数乘方的法则:

40、乘方的定义:


数学初中全部重要知识点总结 40句菁华扩展阅读


数学初中全部重要知识点总结 40句菁华(扩展1)

——初中数学知识点总结 100句菁华

1、代数式

2、整式与分式

3、方程与方程组

4、解一元二次方程的步骤:

5、过两点有且只有一条直线

6、同角或等角的补角相等

7、过一点有且只有一条直线和已知直线垂直

8、两直线*行,同位角相等

9、两直线*行,同旁内角互补

10、全等三角形的对应边、对应角相等

11、逆定理

12、四边形的外角和等于360°

13、*行四边形性质定理1

14、矩形判定定理1

15、菱形性质定理1

16、正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角

17、*移的作图步骤和方法:

18、等腰梯形判定定理

19、数轴:数轴是规定了原点、正方向、单位长度的一条直线。

20、*行线等分线段定理

21、*行于三角形的一边,并且和其他两边相交的直线,

22、相似三角形判定定理1

23、混合运算法则:先乘方,后乘除,最后加减。

24、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。若|a|=a,则a≥0;若|a|=-a,则a≤0。

25、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)

26、到已知角的两边距离相等的点的轨迹,是这个角的*分线

27、去括号法则

28、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线

29、整式的运算:

30、直线的性质

31、角的性质

32、多边形:由若干条不在同一条直线上的线段首尾顺次相连组成的封闭*面图形叫做多边形。连接不相邻两个顶点的线段叫做多边形的对角线。

33、各种统计图的特点

34、正数和负数的有关概念

35、在把有理数加减混合运算统一为最简的形式,负数前面的加号可以省略不写.

36、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。

37、列一元一次方程解应用题:

38、正数和负数的有关概念

39、三角形外角的性质

40、两组对边*行的四边形是*行四边形。

41、性质:

42、性质:矩形的四个角都是直角,矩形的对角线相等

43、直角三角形斜边上的中线等于斜边的一半。

44、同类项:所含字母相同,并且相同字母的指数也相同的项。与字母前面的系数(≠0)无关。

45、同类项必须同时满足两个条件:(1)所含字母相同;(2)相同字母的次数相同,二者缺一不可、同类项与系数大小、字母的排列顺序无关

46、对称性:等腰梯形是轴对称图形

47、合并同类项:把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。

48、公式与性质

49、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

50、弧长计算公式:L=n兀R/180

51、如果B=0即直线为Ax+C=0,即x=-C/A,它*行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1

52、多边形与多边形的运动图形问题:把一个三角形或四边形沿一定方向运动经过另一个多边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象.

53、求出每段的解析式.

54、对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

55、互为余角:如果两个角的和是一个直角,这两个角叫做互为余角。

56、推论:1)在同圆或等圆中,相等的圆周角所对的弧相等。

57、人们通常用一条直线上的点表示数,这条直线叫做数轴。

58、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值。

59、两个负数,绝对值大的反而小。

60、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

61、有理数

62、四边形

63、图形的轴对称

64、图形的相似

65、过一点有且只有一条直线和已知直线垂直。

66、同旁内角互补,两直线*行。

67、推论1直角三角形的两个锐角互余。

68、推论2三角形的一个外角等于和它不相邻的两个内角的和。

69、推论3三角形的一个外角大于任何一个和它不相邻的内角。

70、角的*分线是到角的两边距离相等的所有点的集合。

71、推论1等腰三角形顶角的*分线*分底边并且垂直于底边。

72、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)。

73、推论1三个角都相等的三角形是等边三角形。

74、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半。

75、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直*分线上。

76、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直*分线。

77、多边形内角和定理n边形的内角的和等于(n-2)×180°。

78、*行四边形性质定理1*行四边形的对角相等。

79、*行四边形性质定理3*行四边形的对角线互相*分。

80、*行四边形判定定理1两组对角分别相等的四边形是*行四边形。

81、菱形面积=对角线乘积的一半,即S=(a×b)÷2。

82、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点*分,那么这两个图形关于这一点对称。

83、等腰梯形性质定理等腰梯形在同一底上的两个角相等。

84、(1)比例的基本性质:

85、(3)等比性质:

86、*行线分线段成比例定理三条*行线截两条直线,所得的对应线段成比例。

87、性质定理2相似三角形周长的比等于相似比。

88、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线。

89、推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

90、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。

91、①直线L和⊙O相交d﹤r。

92、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。

93、①两圆外离d﹥R+r。

94、定理把圆分成n(n≥3):

95、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形。

96、垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。

97、同位角:(在两条直线的同一旁,第三条直线的同一侧)在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。如:∠1和∠5。

98、两条*行线被第三条直线所截,同旁内角互补。(两直线*行,同旁内角相等)

99、命题的概念:判断一件事情的语句,叫做命题。

100、不等式组的解:几个不等式的解集的公共部分,叫做由它们组成的不等式组的解集。解不等式组就是求它的解集。


数学初中全部重要知识点总结 40句菁华(扩展2)

——初中数学重要知识点总结 40句菁华

1、不等式:用不等号表示不等关系的式子,叫做不等式。

2、解一元一次不等式的一般步骤:1去分母2去括号3移项4合并同类项5将x项的系数化为1。

3、3实际问题与一元二次方程一节安排了四个探究栏目,分别探究传播、成本下降率、面积、匀变速运动等问题,使学生进一步体会方程是刻画现实世界的一个有效的数学模型。

4、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。

5、有理数:

6、实数

7、整式与分式

8、方程与方程组

9、同角或等角的补角相等

10、过一点有且只有一条直线和已知直线垂直

11、*行公理:经过直线外一点,有且只有一条直线与这条直线*行

12、如果两条直线都和第三条直线*行,这两条直线也互相*行

13、内错角相等,两直线*行

14、推论3

15、边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等

16、角边角公理(

17、角的*分线是到角的两边距离相等的所有点的集合

18、推论2等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合,即三线合一;

19、直角三角形斜边上的中线等于斜边上的一半

20、多边形内角和定理

21、矩形性质定理1

22、矩形性质定理2

23、菱形性质定理1

24、正方形性质定理1

25、三角形中位线定理

26、判定定理3

27、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)

28、到已知角的两边距离相等的点的轨迹,是这个角的*分线

29、垂径定理

30、圆的外切四边形的两组对边的和相等

31、如果两个圆相切,那么切点一定在连心线上

32、正n边形的面积Sn=pn*rn/2

33、正三角形面积√3a^2/4

34、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

35、推论2经过切点且垂直于切线的直线必经过圆心

36、切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线*分两条切线的夹角

37、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

38、扇形面积公式:S扇形=n兀R^2/360=LR/2

39、内公切线长=d-(R-r)外公切线长=d-(R+r)

40、弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r


数学初中全部重要知识点总结 40句菁华(扩展3)

——数学初中知识点总结 40句菁华

1、解一元二次方程的步骤:

2、点,线,面

3、同角或等角的补角相等

4、直线外一点与直线上各点连接的所有线段中,垂线段最短

5、同位角相等,两直线*行

6、两直线*行,同旁内角互补

7、定理

8、推论1

9、推论3

10、定理1

11、定理3

12、勾股定理

13、矩形判定定理1

14、正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角

15、*行线等分线段定理

16、梯形中位线定理

17、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d

18、*行线分线段成比例定理

19、判定定理2

20、性质定理1

21、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)

22、圆是定点的距离等于定长的点的集合

23、垂径定理

24、圆的外切四边形的两组对边的和相等

25、①两圆外离

26、正n边形的每个内角都等于(n-2)×180°/n

27、正n边形的面积Sn=pnxrn/2

28、弧长计算公式:L=n兀R/180——》L=nR

29、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

30、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

31、三角形外角的性质

32、两组对边*行的四边形是*行四边形。

33、定义:有一个角是直角的*行四边形叫做矩形

34、对称性:矩形是轴对称图形也是中心对称图形。

35、s菱=争6(n、6分别为对角线长)

36、对称性:菱形是轴对称图形也是中心对称图形

37、等腰梯形的性质:等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等

38、多边形外角和定理:

39、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

40、扇形面积公式:S扇形=n兀R^2/360=LR/2


数学初中全部重要知识点总结 40句菁华(扩展4)

——初中数学全册知识点 50句菁华

1、实数

2、方程与方程组

3、解一元二次方程的步骤:

4、一元二次方程根的情况

5、同位角相等,两直线*行

6、内错角相等,两直线*行

7、两直线*行,同旁内角互补

8、推论1

9、推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等

10、定理1

11、定理2

12、等腰三角形的判定定理

13、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

14、勾股定理的逆定理

15、*行四边形性质定理2

16、*行四边形判定定理3

17、*行四边形判定定理4

18、矩形判定定理2

19、菱形性质定理2

20、菱形判定定理1

21、圆的外部可以看作是圆心的距离大于半径的点的集合

22、同圆或等圆的半径相等

23、垂径定理

24、圆是以圆心为对称中心的中心对称图形

25、切线的性质定理

26、相交弦定理

27、正n边形的面积Sn=pn*rn/2

28、三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。

29、对称性:*行四边形是中心对称图形

30、定义:有一个角是直角的*行四边形叫做矩形

31、性质:矩形的四个角都是直角,矩形的对角线相等

32、定义:有一组邻边相等的*行四边形叫做菱形

33、定义:一组对边*行,另一组对边不*行的四边形是梯形。两腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形

34、对称性:等腰梯形是轴对称图形

35、多边形:在*面内,由一些线段首尾顺次相接组成的图形叫做多边形。

36、正多边形:在*面内,各个角都相等,各条边都相等的多边形叫做正多边形。

37、*面镶嵌:用一些不重叠摆放的多边形把*面的一部分完全覆盖,叫做用多边形覆盖*面。

38、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

39、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

40、推论1经过圆心且垂直于切线的直线必经过切点

41、推论2经过切点且垂直于切线的直线必经过圆心

42、推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

43、有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数—小数> 0,小数—大数< 0。

44、有理数乘法的运算律:

45、科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法。

46、有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字。

47、反证法

48、一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

49、一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1 ……(检验方程的解)。

50、列一元一次方程解应用题:


数学初中全部重要知识点总结 40句菁华(扩展5)

——必修一知识点总结 40句菁华

1、水:(1)含量:占细胞总重量的60%-90%,是活细胞中含量是最多的物质。

2、细胞膜功能:

3、细胞学说建立者是施莱登和施旺,细胞学说建立揭示了细胞的统一性和生物体结构的统一性。细胞学说建立过程,是一个在科学探究中开拓、继承、修正和发展的过程,充满耐人寻味的曲折。

4、糖类:

5、水存在形式运送营养物质及代谢废物

6、植物细胞的细胞壁成分为纤维素和果胶,具有支持和保护作用。

7、消化酶、抗体等分泌蛋白合成需要四种细胞器:核糖体,内质网、高尔基体、线粒体。

8、叶绿素a

9、光合作用是指绿色植物通过叶绿体,利用光能,把CO2和H2O转化成储存能量的有机物,并且释放出O2的过程。

10、自养生物:可将CO2、H2O等无机物合成葡萄糖等有机物,如绿色植物,硝化细菌(化能合成)

11、细胞表面积与体积关系限制了细胞的长大,细胞增殖是生物体生长、发育、繁殖遗传的基础。

12、真核细胞的分裂方式减数分裂:生殖细胞(*,卵细胞)增殖

13、细胞分化:个体发育中,由一个或一种细胞增殖产生的后代,在形态、结构和生理功能上发生稳定性差异的过程,它是一种持久性变化,是生物体发育的基础,使多细胞生物体中细胞趋向专门化,有利于提高各种生理功能效率。

14、清朝发展

15、“海禁”的直接原因:担心流亡海上的敌对势力勾结倭寇,危及明朝的统治

16、“闭关锁国”的直接原因:为了对付东南沿海人民的抗清斗争

17、“闭关锁国”的表现:清代初年,厉行海禁、迁界,海外贸易陷入停顿;康熙晚期,禁止商人前往南洋贸易;乾隆开广州通商,特许“十三行”经营管理对外贸易

18、物质的量(n)是表示含有一定数目粒子的集体的物理量。

19、摩尔(mol):把含有6、02×1023个粒子的任何粒子集体计量为1摩尔。

20、标准状况下,Vm=22、4L/mol

21、一定物质的量浓度的配制

22、转动(转换器),换上高倍镜。

23、调节(细准焦螺旋),使物象清晰。

24、调亮视野的两种方法(放大光圈)、(使用凹面镜)。

25、高倍镜:物象(大),视野(暗),看到细胞数目(少)。

26、细胞的发现者及命名者:英国科学家、罗伯特?虎克

27、内容要点:P10,共三点

28、揭示问题:揭示了(细胞统一性,和生物体结构的统一性)。

29、混淆x—t图象和v—t图象,不能区分它们的物理意义

30、不能正确计算图线的斜率、面积

31、在处理汽车刹车、飞机降落等实际问题时注意,汽车、飞机停止后不会后退

32、生物体生命活动的物质基础是:组成生物体的各种化学元素和化合物。

33、自然界中含量最多的元素是O;占人体细胞干重最多的元素是C, 占细胞鲜重最多的元素是O。

34、C、H、O、N四种元素含量比较: 鲜重:O C H N; 干重:C O N H

35、生物界与非生物界具有统一性:组成细胞的元素在无机自然界都可以找到,没有一种是细胞所特有的。

36、在可溶性还原糖、脂肪、蛋白质鉴定中要用显微镜的是:脂肪的鉴定;

37、还原糖鉴定实验所选择的材料:含糖量高,白色或近于白色的植物组织。

38、蛋白质的功能:①构成细胞和生物体的重要物质 ②催化作用,如酶 ③运输作用,如血红蛋白运输氧气、载体蛋白 ④调节作用,如胰岛素、生长激素等 ⑤免疫作用,如抗体。

39、抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).

40、抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x=-b/2a时,y最小(大)值=(4ac-b^2)/4a.


数学初中全部重要知识点总结 40句菁华(扩展6)

——数学圆知识点总结 40句菁华

1、推论:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

2、推论:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

3、①直线L和⊙O相交d﹤r

4、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线

5、推论:经过圆心且垂直于切线的直线必经过切点

6、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线*分两条切线的夹角

7、推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

8、推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

9、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项

10、定理:

11、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

12、正n边形的面积Sn=pr/2p表示正n边形的周长,r为边心距

13、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此

14、圆有无数条半径,有无数条直径。

15、圆心决定圆的位置,半径决定圆的大小。

16、把圆对折,再对折就能找到圆心。

17、圆是轴对称图形,直径所在的直线是圆的对称轴。圆有无数条对称轴。

18、在同一个圆里,直径的长度是半径的2倍,可以表示为d=2r或r=d/2.

19、圆的周长除以直径的商是一个固定的数,叫做圆周率,用字母表示,计算时通常取3.14.

20、分数乘分数是求一个数的几分之几是多少。

21、反证法

22、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

23、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×n-2180°/n=360°化为n-2k-2=4

24、扇形面积公式:S扇形=n兀R^2/360=LR/2

25、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

26、圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。

27、直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。

28、在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。

29、直线AB与圆O的位置关系(设OPAB于P,则PO是AB到圆心的距离):

30、圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。

31、圆的周长C=2d

32、圆的面积S=πr

33、直线AB与圆O的位置关系(设OP⊥AB于P,则PO是AB到圆心的距离):

34、圆的周长C=2πr=πd

35、切线的性质定理 圆的切线垂直于经过切点的半径

36、推论1 经过圆心且垂直于切线的直线必经过切点

37、圆的外切四边形的两组对边的和相等 外角等于内对角

38、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

39、定理 一条弧所对的圆周角等于它所对的圆心角的一半

40、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径


数学初中全部重要知识点总结 40句菁华(扩展7)

——生物必修二知识点总结 40句菁华

1、细胞中染色体数目:若为奇数——减数第二次分裂(次级精母细胞、次级卵母细胞、减数第二次分裂后期,看一极)若为偶数——有丝分裂、减数第一次分裂。

2、体液:体内含有的大量以水为基础的物体。

3、内环境:由细胞外液构成的液体环境。

4、什么是生物群落?

5、什么是互利共生?

6、什么是群落的垂直结构?

7、无丝_程中不出现纺锤丝和染色体,不能保证遗传物质的*均分配。例如蛙的红细胞

8、反射的结构基础:反射弧

9、兴奋在神经纤维上的传导

10、水盐调节

11、神经调节与体液调节的关系

12、红绿色盲、抗维生素D佝偻病等,它们的基因位于性染色体上,所以遗传上总是和性别相关联,这种现象叫做伴性遗传。

13、碱基之间的这种一一对应的关系,叫做碱基互补配对原则。

14、游离在细胞质中的各种氨基酸,就以mRNA为模板合成具有一定氨基酸顺序的蛋白质,这一过程叫做翻译。

15、由于自然界诱发基因突变的因素很多,基因突变还可以自发产生,因此,基因突变在生物界中是普遍存在的。

16、基因突变是随机发生的、不定向的。

17、体内细胞生活在细胞外液中

18、内环境中存在和不存在的物质

19、内环境的稳态

20、组织水肿及其产生原因分析

21、有丝分裂:大多数植物和动物的体细胞,以有丝分裂的方式增加数目。有丝分裂是细胞分裂的主要方式。亲代细胞的染色体复制一次,细胞分裂两次。

22、赤道板:细胞有丝分裂中期,染色体的着丝粒准确地排列在纺锤体的赤道*面上,因此叫做赤道板。

23、免疫系统的组成

24、免疫细胞 T细胞淋巴细胞 B细胞

25、反射弧:是反射活动的结构基础和功能单位。

26、兴奋在神经元之间的传递:

27、细胞是一个相对独立的单位,既有它自己的生命,又对与其他细胞共同组成的整体的生命起作用。

28、新细胞可以从老细胞中产生。

29、构成细胞和生物体的重要物质:如细胞膜、染色体、肌肉中的蛋白质;

30、有些蛋白质有免疫作用:如抗体。

31、生物体都有生长.发育和生殖的现象。

32、糖类是构成生物体的重要成分,是细胞的主要能源物质,是生物体进行生命活动的主要能源物质。

33、活细胞中的各种代谢活动,都与细胞膜的结构和功能有密切关系。细胞膜具一定的流动性这一结构特点,具选择透过性这一功能特性。

34、细胞质基质是活细胞进行新陈代谢的主要场所,为新陈代谢的进行,提供所需要的物质和一定的环境条件。

35、细胞中的高尔基体与细胞分泌物的形成有关,主要是对蛋白质进行加工和转运;植物细胞分裂时,高尔基体与细胞壁的形成有关。

36、细胞有丝分裂的重要意义(特征),是将亲代细胞的染色体经过复制以后,精确地*均分配到两个子细胞中去,因而在生物的亲代和子代间保持了遗传性状的稳定性,对生物的遗传具重要意义。

37、兴奋传导

38、激素调节:由内分泌器官(或细胞)分泌的化学物质进行调节

39、血糖*衡的调节

40、全球问题:酸雨、、臭氧层破坏、温室效应。

相关内容
相关词条
热门标签
全站热门
当前热门
标签索引

精美图文推荐

上一篇 下一篇
返回首页


文案 | 句子 | 文案 | 成语 | 文案| 句子| 教学反思 | 教学设计 | 合同范本 | 工作报告 | 活动策划鄂ICP备2022017863号-1