位置 > 首页 > 句子 >

数学初中全部重要知识点总结 40句菁华

日期:2022-12-03 00:00:00

1、一元二次方程的二次函数的关系

2、一元二次方程的解法

3、韦达定理

4、同角或等角的补角相等

5、*行公理:经过直线外一点,有且只有一条直线与这条直线*行

6、内错角相等,两直线*行

7、同旁内角互补,两直线*行

8、推论3

9、角边角公理(

10、斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等

11、角的*分线是到角的两边距离相等的所有点的集合

12、推论2等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合,即三线合一;

13、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

14、逆定理

15、勾股定理

16、矩形性质定理2

17、菱形判定定理2

18、等腰梯形的两条对角线相等

19、梯形中位线定理

20、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

21、*行线分线段成比例定理

22、性质定理3

23、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)

24、圆的内部可以看作是圆心的距离小于半径的点的集合

25、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线

26、到已知角的两边距离相等的点的轨迹,是这个角的*分线

27、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线

28、垂径定理

29、切线长定理

30、正三角形面积√3a^2/4

31、圆的有关性质

32、菱形的性质:⑴矩形具有*行四边形的一切性质;

33、公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

34、提取公因式步骤:①确定公因式。②确定商式③公因式与商式写成积的形式。

35、联系:二者之间存在着从属关系;存在条件相同;0的算术*方根与*方根都是0

36、含根号式子的意义:表示a的*方根,表示a的算术*方根,表示a的负的*方根。

37、有理数减法法则:减去一个数,等于加上这个数的相反数;即a—b=a+(—b)。

38、有理数乘法法则:

39、有理数乘方的法则:

40、乘方的定义:


数学初中全部重要知识点总结 40句菁华扩展阅读


数学初中全部重要知识点总结 40句菁华(扩展1)

——初中数学知识点总结 100句菁华

1、代数式

2、整式与分式

3、方程与方程组

4、解一元二次方程的步骤:

5、过两点有且只有一条直线

6、同角或等角的补角相等

7、过一点有且只有一条直线和已知直线垂直

8、两直线*行,同位角相等

9、两直线*行,同旁内角互补

10、全等三角形的对应边、对应角相等

11、逆定理

12、四边形的外角和等于360°

13、*行四边形性质定理1

14、矩形判定定理1

15、菱形性质定理1

16、正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角

17、*移的作图步骤和方法:

18、等腰梯形判定定理

19、数轴:数轴是规定了原点、正方向、单位长度的一条直线。

20、*行线等分线段定理

21、*行于三角形的一边,并且和其他两边相交的直线,

22、相似三角形判定定理1

23、混合运算法则:先乘方,后乘除,最后加减。

24、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。若|a|=a,则a≥0;若|a|=-a,则a≤0。

25、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)

26、到已知角的两边距离相等的点的轨迹,是这个角的*分线

27、去括号法则

28、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线

29、整式的运算:

30、直线的性质

31、角的性质

32、多边形:由若干条不在同一条直线上的线段首尾顺次相连组成的封闭*面图形叫做多边形。连接不相邻两个顶点的线段叫做多边形的对角线。

33、各种统计图的特点

34、正数和负数的有关概念

35、在把有理数加减混合运算统一为最简的形式,负数前面的加号可以省略不写.

36、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。

37、列一元一次方程解应用题:

38、正数和负数的有关概念

39、三角形外角的性质

40、两组对边*行的四边形是*行四边形。

41、性质:

42、性质:矩形的四个角都是直角,矩形的对角线相等

43、直角三角形斜边上的中线等于斜边的一半。

44、同类项:所含字母相同,并且相同字母的指数也相同的项。与字母前面的系数(≠0)无关。

45、同类项必须同时满足两个条件:(1)所含字母相同;(2)相同字母的次数相同,二者缺一不可、同类项与系数大小、字母的排列顺序无关

46、对称性:等腰梯形是轴对称图形

47、合并同类项:把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。

48、公式与性质

49、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

50、弧长计算公式:L=n兀R/180

51、如果B=0即直线为Ax+C=0,即x=-C/A,它*行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1

52、多边形与多边形的运动图形问题:把一个三角形或四边形沿一定方向运动经过另一个多边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象.

53、求出每段的解析式.

54、对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

55、互为余角:如果两个角的和是一个直角,这两个角叫做互为余角。

56、推论:1)在同圆或等圆中,相等的圆周角所对的弧相等。

57、人们通常用一条直线上的点表示数,这条直线叫做数轴。

58、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值。

59、两个负数,绝对值大的反而小。

60、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

61、有理数

62、四边形

63、图形的轴对称

64、图形的相似

65、过一点有且只有一条直线和已知直线垂直。

66、同旁内角互补,两直线*行。

67、推论1直角三角形的两个锐角互余。

68、推论2三角形的一个外角等于和它不相邻的两个内角的和。

69、推论3三角形的一个外角大于任何一个和它不相邻的内角。

70、角的*分线是到角的两边距离相等的所有点的集合。

71、推论1等腰三角形顶角的*分线*分底边并且垂直于底边。

72、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)。

73、推论1三个角都相等的三角形是等边三角形。

74、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半。

75、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直*分线上。

76、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直*分线。

77、多边形内角和定理n边形的内角的和等于(n-2)×180°。

78、*行四边形性质定理1*行四边形的对角相等。

79、*行四边形性质定理3*行四边形的对角线互相*分。

80、*行四边形判定定理1两组对角分别相等的四边形是*行四边形。

81、菱形面积=对角线乘积的一半,即S=(a×b)÷2。

82、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点*分,那么这两个图形关于这一点对称。

83、等腰梯形性质定理等腰梯形在同一底上的两个角相等。

84、(1)比例的基本性质:

85、(3)等比性质:

86、*行线分线段成比例定理三条*行线截两条直线,所得的对应线段成比例。

87、性质定理2相似三角形周长的比等于相似比。

88、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线。

89、推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

90、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。

91、①直线L和⊙O相交d﹤r。

92、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。

93、①两圆外离d﹥R+r。

94、定理把圆分成n(n≥3):

95、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形。

96、垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。

97、同位角:(在两条直线的同一旁,第三条直线的同一侧)在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。如:∠1和∠5。

98、两条*行线被第三条直线所截,同旁内角互补。(两直线*行,同旁内角相等)

99、命题的概念:判断一件事情的语句,叫做命题。

100、不等式组的解:几个不等式的解集的公共部分,叫做由它们组成的不等式组的解集。解不等式组就是求它的解集。


数学初中全部重要知识点总结 40句菁华(扩展2)

——初中数学重要知识点总结 40句菁华

1、不等式:用不等号表示不等关系的式子,叫做不等式。

2、解一元一次不等式的一般步骤:1去分母2去括号3移项4合并同类项5将x项的系数化为1。

3、3实际问题与一元二次方程一节安排了四个探究栏目,分别探究传播、成本下降率、面积、匀变速运动等问题,使学生进一步体会方程是刻画现实世界的一个有效的数学模型。

4、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。

5、有理数:

6、实数

7、整式与分式

8、方程与方程组

9、同角或等角的补角相等

10、过一点有且只有一条直线和已知直线垂直

11、*行公理:经过直线外一点,有且只有一条直线与这条直线*行

12、如果两条直线都和第三条直线*行,这两条直线也互相*行

13、内错角相等,两直线*行

14、推论3

15、边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等

16、角边角公理(

17、角的*分线是到角的两边距离相等的所有点的集合

18、推论2等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合,即三线合一;

19、直角三角形斜边上的中线等于斜边上的一半

20、多边形内角和定理

21、矩形性质定理1

22、矩形性质定理2

23、菱形性质定理1

24、正方形性质定理1

25、三角形中位线定理

26、判定定理3

27、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)

28、到已知角的两边距离相等的点的轨迹,是这个角的*分线

29、垂径定理

30、圆的外切四边形的两组对边的和相等

31、如果两个圆相切,那么切点一定在连心线上

32、正n边形的面积Sn=pn*rn/2

33、正三角形面积√3a^2/4

34、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

35、推论2经过切点且垂直于切线的直线必经过圆心

36、切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线*分两条切线的夹角

37、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

38、扇形面积公式:S扇形=n兀R^2/360=LR/2

39、内公切线长=d-(R-r)外公切线长=d-(R+r)

40、弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r


数学初中全部重要知识点总结 40句菁华(扩展3)

——数学初中知识点总结 40句菁华

1、解一元二次方程的步骤:

2、点,线,面

3、同角或等角的补角相等

4、直线外一点与直线上各点连接的所有线段中,垂线段最短

5、同位角相等,两直线*行

6、两直线*行,同旁内角互补

7、定理

8、推论1

9、推论3

10、定理1

11、定理3

12、勾股定理

13、矩形判定定理1

14、正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角

15、*行线等分线段定理

16、梯形中位线定理

17、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d

18、*行线分线段成比例定理

19、判定定理2

20、性质定理1

21、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)

22、圆是定点的距离等于定长的点的集合

23、垂径定理

24、圆的外切四边形的两组对边的和相等

25、①两圆外离

26、正n边形的每个内角都等于(n-2)×180°/n

27、正n边形的面积Sn=pnxrn/2

28、弧长计算公式:L=n兀R/180——》L=nR

29、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

30、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

31、三角形外角的性质

32、两组对边*行的四边形是*行四边形。

33、定义:有一个角是直角的*行四边形叫做矩形

34、对称性:矩形是轴对称图形也是中心对称图形。

35、s菱=争6(n、6分别为对角线长)

36、对称性:菱形是轴对称图形也是中心对称图形

37、等腰梯形的性质:等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等

38、多边形外角和定理:

39、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

40、扇形面积公式:S扇形=n兀R^2/360=LR/2


数学初中全部重要知识点总结 40句菁华(扩展4)

——数学的知识点总结 50句菁华

1、认识“0”的产生,理解“0”的含义,0即可以表示一个物体也没有,也可以表示起点和分界点。

2、有理数分类:整数(正整数、0、负整数)、分数(正分数、负分数)

3、绝对值的三句:正数的绝对值是它本身,

4、乘方:表示n个相同因数的乘积。

5、负数的奇次幂是负数,负数的偶次幂是正数。

6、倒数:若两个数的积等于1,则这两个数互为倒数。

7、绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;

8、有括号:里外(先去小括号、再去中括号、最后去大括号)

9、初步了解加法的含义,会读、写加法算式,感悟把两个数合并在一起求一共是多少,用加法计算;

10、点与圆的位置关系及其数量特征:如果圆的半径为r,点到圆心的距离为d,则

11、圆周角定理;一条弧所对的圆周角等于它所对的圆心角的一半.

12、无理数

13、因式分解,必须进行到每一个多项式因式不能再分解为止。

14、多边形的边:组成多边形的各条线段叫做多边形的边。

15、多边形的周长:多边形各边的长度和叫做多边形的周长。

16、多边形的角:多边形相邻两边所组成的角叫做多边形的内角,简称多边形的'角。

17、顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

18、两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有2个公共点的叫相交。两圆圆心之间的距离叫做圆心距。

19、扇形面积S=n/360=rl/2 5.圆锥侧面积S=rl

20、圆的标准方程

21、圆柱的表面积=圆柱的侧面积+底面积×2即S表=S侧+S底×2或2πr×h+2×π

22、圆锥的体积等于与它等底等高的圆柱体积的三分之一,即V锥=1/3Sh或πr2×h÷

23、多边形的角:多边形相邻两边所组成的角叫做多边形的内角,简称多边形的角。

24、多项式的排列

25、收集数据

26、整理数据

27、描述数据

28、加减:

29、分数乘整数:数形结合、转化化归

30、整数的倒数

31、分数除法:分数除法是分数乘法的逆运算。

32、分数除法应用题:先找单位1。单位1已知,求部分量或对应分率用乘法,求单位1用除法。

33、有理数:

34、绝对值:

35、有理数加法法则:

36、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,。

37、正数和负数的有关概念

38、利用绝对值比较大小

39、在把有理数加减混合运算统一为最简的形式,负数前面的加号可以省略不写.

40、公式。(每两个相邻的时间单位之间的进率是60)

41、1厘米的长度里有(10)小格,每小格的长度(相等),都是(1)毫米。

42、在计算长度时,只有相同的长度单位才能相加减。

43、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。

44、求一个数是另一个数的几倍用除法:一个数÷另一个数=倍数

45、(关于“大约)应用题:

46、有4条直的边和4个角封闭图形我们叫它四边形。

47、四边形的特点:有四条直的边,有四个角。

48、*行四边形的特点:

49、封闭图形一周的长度,就是它的周长。

50、①相同分母的分数相加、减:分母不变,只和分子相加、减。


数学初中全部重要知识点总结 40句菁华(扩展5)

——初三物理知识点总结 40句菁华

1、(1)分子运动理论的基本内容:物质是由分子组成的;分子不停地做无规则运动;分子间存在相互

2、在通常情况下,原子核所带正电荷与核外电子总共所带负电荷在数量上相等,电性相反,整个原子

3、把电路元件逐个顺次连接起来的电路叫串联电路;串联电路特点:电流只有一条路径;各用电器互

4、把电路元件并列连接起来的电路叫并联电路;并联电路特点:电流有多条路径;各用电器互不影响;

5、电流表的结构:接线柱、量程、示数、分度值

6、电压表的读数方法:A、看接线柱确定量程。B、看分度值(每一小格代表多少伏)。C、看指针偏转

7、欧姆定律使用注意:单位必须统一,电流用A,电压用V,电阻用Ω;不能理解为:电阻与电压成

8、当电路出现短路现象(电路中电源不经过用电器而直接被接通的情况)时,根据I=U/R 可知,因为

9、电阻的串联与并联:

10、测量时注意:A、闭合开关前,滑动变阻器滑片应该滑到电阻最大端;B、测

11、对人体安全的电压应该不高于36V,因为根据欧姆定律I=U/R 可知,在电阻不变的情况下,电压越

12、电能用W表示,常用单位是千瓦时(kW·h),又叫“度”,在物理学中能量的通用单位是焦耳(J),

13、电能转化为其他形式能的过程是做功的过程,电流做了多少功就消耗了多少电能,也就是有多少电能转化为其它形式的能。实质上,电功就是电能,也用W表示,通用单位也是焦耳(J),常用单位是千瓦时(kW?h)。

14、电功率是表示消耗电能的快慢的物理量,用P表示,国际制单位的主单位是瓦特,简称瓦,符号是

15、电功率与电能、时间的关系: P=W/t在使用时,单位要统一,单位有两种可用:(1)、电功率用瓦(W),电能用焦耳(J),时间用秒(S);(2)、电功率用千瓦(kW),电能用千瓦时(kW?h,度),时间用小时(h)。

16、电功率与电压、电流的关系公式: P=IU 单位:电功率用瓦(W),电流用安(A),电压用伏(V)。

17、用电器在额定电压下工作时的电功率(或者说用电器正常工作时的电功率),叫做额定功率。用电器实际工作时的电功率叫实际功率,电灯的亮度就取决于灯的实际功率。

18、电流通过导体时电能转化成热的现象叫电流的热效应。利用电来加热的用电器叫电热器。

19、电流的热效应对人们有有利的一面(如电炉、电热水器、电热毯等),也有不利的一面(如电视机、电脑、电动机在工作时产生的热量)。我们要利用有利电热,减少或防止不利电热(如电视机的散热窗,电脑中的散热风扇,电动机的外壳铁片等)。

20、家庭电路由:进户线→电能表→总开关→保险盒→用电器。

21、所有家用电器和插座都是并联的。而开关则要与它所控制的用电器串联。

22、物质密度和外界条件的关系

23、质量的定义:物体含有物质的多少。

24、质量的单位:在国际单位制中,质量的单位是千克。其它常用单位还有吨、克、毫克。

25、托盘天*

26、匀速直线运动的速度一定不变。只要是匀速直线运动,则速度一定是一个定值。

27、密度不是一定不变的。密度是物质的属性,和质量体积无关,但和温度有关,尤其是气体密度跟随温度的变化比较明显。

28、物体运动状态改变一定受到了力,受力不一定改变运动状态。力是改变物体运动状态的原因。受力也包含受包含受*衡力,此时运动状态就不变。

29、惯性大小和速度无关。惯性大小只跟质量有关。速度越大只能说明物体动能大,能够做的功越多,并不是惯性越大。

30、压力增大摩擦力不一定增大。滑动摩擦力跟压力有关,但静摩擦力跟压力无关,只跟和它*衡的力有关。

31、动滑轮一定省一半力。只有沿竖直或水*方向拉,才能省一半力。

32、动力最小,力臂应该最大。力臂最大做法:在杠杆上找一点,使这一点到支点的距离最远。

33、电源:提供电能;

34、导线:传输电能;

35、开关控制所有用电器,在不同的位置作用一样。

36、功的定义:在物理学中,把作用在物体上的力和物体在力的方向上移动的距离的乘积.

37、功率的物理意义表示物体(力)做功快慢程度的物理量.

38、比热容表示的是质量相同的不同物质升高相同的温度,吸收的热量是不同的这一特性。

39、同一种物质在不同状态下的比热容的值也不同。例如水和冰是同种物质,不同状态,它们的比热容是不同的。

40、受力分析的'步骤:确定研究对象;找重力;找接触物体;判断和接触物体之间是否有压力、支持力、摩擦力、拉力等其它力。


数学初中全部重要知识点总结 40句菁华(扩展6)

——数学圆知识点总结 40句菁华

1、推论:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

2、推论:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

3、①直线L和⊙O相交d﹤r

4、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线

5、推论:经过圆心且垂直于切线的直线必经过切点

6、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线*分两条切线的夹角

7、推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

8、推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

9、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项

10、定理:

11、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

12、正n边形的面积Sn=pr/2p表示正n边形的周长,r为边心距

13、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此

14、圆有无数条半径,有无数条直径。

15、圆心决定圆的位置,半径决定圆的大小。

16、把圆对折,再对折就能找到圆心。

17、圆是轴对称图形,直径所在的直线是圆的对称轴。圆有无数条对称轴。

18、在同一个圆里,直径的长度是半径的2倍,可以表示为d=2r或r=d/2.

19、圆的周长除以直径的商是一个固定的数,叫做圆周率,用字母表示,计算时通常取3.14.

20、分数乘分数是求一个数的几分之几是多少。

21、反证法

22、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

23、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×n-2180°/n=360°化为n-2k-2=4

24、扇形面积公式:S扇形=n兀R^2/360=LR/2

25、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

26、圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。

27、直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。

28、在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。

29、直线AB与圆O的位置关系(设OPAB于P,则PO是AB到圆心的距离):

30、圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。

31、圆的周长C=2d

32、圆的面积S=πr

33、直线AB与圆O的位置关系(设OP⊥AB于P,则PO是AB到圆心的距离):

34、圆的周长C=2πr=πd

35、切线的性质定理 圆的切线垂直于经过切点的半径

36、推论1 经过圆心且垂直于切线的直线必经过切点

37、圆的外切四边形的两组对边的和相等 外角等于内对角

38、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

39、定理 一条弧所对的圆周角等于它所对的圆心角的一半

40、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径

相关内容
相关词条
热门标签
全站热门
当前热门
标签索引

精美图文推荐

上一篇 下一篇
返回首页


文案 | 句子 | 文案 | 成语 | 文案| 句子| 教学反思 | 教学设计 | 合同范本 | 工作报告 | 活动策划鄂ICP备2022017863号-1