位置 > 首页 > 句子 >

数学初中全部重要知识点总结 40句菁华

日期:2022-12-03 00:00:00

1、一元二次方程的二次函数的关系

2、一元二次方程的解法

3、韦达定理

4、同角或等角的补角相等

5、*行公理:经过直线外一点,有且只有一条直线与这条直线*行

6、内错角相等,两直线*行

7、同旁内角互补,两直线*行

8、推论3

9、角边角公理(

10、斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等

11、角的*分线是到角的两边距离相等的所有点的集合

12、推论2等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合,即三线合一;

13、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

14、逆定理

15、勾股定理

16、矩形性质定理2

17、菱形判定定理2

18、等腰梯形的两条对角线相等

19、梯形中位线定理

20、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

21、*行线分线段成比例定理

22、性质定理3

23、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)

24、圆的内部可以看作是圆心的距离小于半径的点的集合

25、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线

26、到已知角的两边距离相等的点的轨迹,是这个角的*分线

27、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线

28、垂径定理

29、切线长定理

30、正三角形面积√3a^2/4

31、圆的有关性质

32、菱形的性质:⑴矩形具有*行四边形的一切性质;

33、公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

34、提取公因式步骤:①确定公因式。②确定商式③公因式与商式写成积的形式。

35、联系:二者之间存在着从属关系;存在条件相同;0的算术*方根与*方根都是0

36、含根号式子的意义:表示a的*方根,表示a的算术*方根,表示a的负的*方根。

37、有理数减法法则:减去一个数,等于加上这个数的相反数;即a—b=a+(—b)。

38、有理数乘法法则:

39、有理数乘方的法则:

40、乘方的定义:


数学初中全部重要知识点总结 40句菁华扩展阅读


数学初中全部重要知识点总结 40句菁华(扩展1)

——初中数学知识点总结 100句菁华

1、代数式

2、整式与分式

3、方程与方程组

4、解一元二次方程的步骤:

5、过两点有且只有一条直线

6、同角或等角的补角相等

7、过一点有且只有一条直线和已知直线垂直

8、两直线*行,同位角相等

9、两直线*行,同旁内角互补

10、全等三角形的对应边、对应角相等

11、逆定理

12、四边形的外角和等于360°

13、*行四边形性质定理1

14、矩形判定定理1

15、菱形性质定理1

16、正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角

17、*移的作图步骤和方法:

18、等腰梯形判定定理

19、数轴:数轴是规定了原点、正方向、单位长度的一条直线。

20、*行线等分线段定理

21、*行于三角形的一边,并且和其他两边相交的直线,

22、相似三角形判定定理1

23、混合运算法则:先乘方,后乘除,最后加减。

24、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。若|a|=a,则a≥0;若|a|=-a,则a≤0。

25、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)

26、到已知角的两边距离相等的点的轨迹,是这个角的*分线

27、去括号法则

28、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线

29、整式的运算:

30、直线的性质

31、角的性质

32、多边形:由若干条不在同一条直线上的线段首尾顺次相连组成的封闭*面图形叫做多边形。连接不相邻两个顶点的线段叫做多边形的对角线。

33、各种统计图的特点

34、正数和负数的有关概念

35、在把有理数加减混合运算统一为最简的形式,负数前面的加号可以省略不写.

36、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。

37、列一元一次方程解应用题:

38、正数和负数的有关概念

39、三角形外角的性质

40、两组对边*行的四边形是*行四边形。

41、性质:

42、性质:矩形的四个角都是直角,矩形的对角线相等

43、直角三角形斜边上的中线等于斜边的一半。

44、同类项:所含字母相同,并且相同字母的指数也相同的项。与字母前面的系数(≠0)无关。

45、同类项必须同时满足两个条件:(1)所含字母相同;(2)相同字母的次数相同,二者缺一不可、同类项与系数大小、字母的排列顺序无关

46、对称性:等腰梯形是轴对称图形

47、合并同类项:把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。

48、公式与性质

49、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

50、弧长计算公式:L=n兀R/180

51、如果B=0即直线为Ax+C=0,即x=-C/A,它*行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1

52、多边形与多边形的运动图形问题:把一个三角形或四边形沿一定方向运动经过另一个多边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象.

53、求出每段的解析式.

54、对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

55、互为余角:如果两个角的和是一个直角,这两个角叫做互为余角。

56、推论:1)在同圆或等圆中,相等的圆周角所对的弧相等。

57、人们通常用一条直线上的点表示数,这条直线叫做数轴。

58、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值。

59、两个负数,绝对值大的反而小。

60、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

61、有理数

62、四边形

63、图形的轴对称

64、图形的相似

65、过一点有且只有一条直线和已知直线垂直。

66、同旁内角互补,两直线*行。

67、推论1直角三角形的两个锐角互余。

68、推论2三角形的一个外角等于和它不相邻的两个内角的和。

69、推论3三角形的一个外角大于任何一个和它不相邻的内角。

70、角的*分线是到角的两边距离相等的所有点的集合。

71、推论1等腰三角形顶角的*分线*分底边并且垂直于底边。

72、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)。

73、推论1三个角都相等的三角形是等边三角形。

74、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半。

75、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直*分线上。

76、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直*分线。

77、多边形内角和定理n边形的内角的和等于(n-2)×180°。

78、*行四边形性质定理1*行四边形的对角相等。

79、*行四边形性质定理3*行四边形的对角线互相*分。

80、*行四边形判定定理1两组对角分别相等的四边形是*行四边形。

81、菱形面积=对角线乘积的一半,即S=(a×b)÷2。

82、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点*分,那么这两个图形关于这一点对称。

83、等腰梯形性质定理等腰梯形在同一底上的两个角相等。

84、(1)比例的基本性质:

85、(3)等比性质:

86、*行线分线段成比例定理三条*行线截两条直线,所得的对应线段成比例。

87、性质定理2相似三角形周长的比等于相似比。

88、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线。

89、推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

90、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。

91、①直线L和⊙O相交d﹤r。

92、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。

93、①两圆外离d﹥R+r。

94、定理把圆分成n(n≥3):

95、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形。

96、垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。

97、同位角:(在两条直线的同一旁,第三条直线的同一侧)在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。如:∠1和∠5。

98、两条*行线被第三条直线所截,同旁内角互补。(两直线*行,同旁内角相等)

99、命题的概念:判断一件事情的语句,叫做命题。

100、不等式组的解:几个不等式的解集的公共部分,叫做由它们组成的不等式组的解集。解不等式组就是求它的解集。


数学初中全部重要知识点总结 40句菁华(扩展2)

——初中数学重要知识点总结 40句菁华

1、不等式:用不等号表示不等关系的式子,叫做不等式。

2、解一元一次不等式的一般步骤:1去分母2去括号3移项4合并同类项5将x项的系数化为1。

3、3实际问题与一元二次方程一节安排了四个探究栏目,分别探究传播、成本下降率、面积、匀变速运动等问题,使学生进一步体会方程是刻画现实世界的一个有效的数学模型。

4、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。

5、有理数:

6、实数

7、整式与分式

8、方程与方程组

9、同角或等角的补角相等

10、过一点有且只有一条直线和已知直线垂直

11、*行公理:经过直线外一点,有且只有一条直线与这条直线*行

12、如果两条直线都和第三条直线*行,这两条直线也互相*行

13、内错角相等,两直线*行

14、推论3

15、边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等

16、角边角公理(

17、角的*分线是到角的两边距离相等的所有点的集合

18、推论2等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合,即三线合一;

19、直角三角形斜边上的中线等于斜边上的一半

20、多边形内角和定理

21、矩形性质定理1

22、矩形性质定理2

23、菱形性质定理1

24、正方形性质定理1

25、三角形中位线定理

26、判定定理3

27、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)

28、到已知角的两边距离相等的点的轨迹,是这个角的*分线

29、垂径定理

30、圆的外切四边形的两组对边的和相等

31、如果两个圆相切,那么切点一定在连心线上

32、正n边形的面积Sn=pn*rn/2

33、正三角形面积√3a^2/4

34、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

35、推论2经过切点且垂直于切线的直线必经过圆心

36、切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线*分两条切线的夹角

37、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

38、扇形面积公式:S扇形=n兀R^2/360=LR/2

39、内公切线长=d-(R-r)外公切线长=d-(R+r)

40、弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r


数学初中全部重要知识点总结 40句菁华(扩展3)

——数学初中知识点总结 40句菁华

1、解一元二次方程的步骤:

2、点,线,面

3、同角或等角的补角相等

4、直线外一点与直线上各点连接的所有线段中,垂线段最短

5、同位角相等,两直线*行

6、两直线*行,同旁内角互补

7、定理

8、推论1

9、推论3

10、定理1

11、定理3

12、勾股定理

13、矩形判定定理1

14、正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角

15、*行线等分线段定理

16、梯形中位线定理

17、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d

18、*行线分线段成比例定理

19、判定定理2

20、性质定理1

21、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)

22、圆是定点的距离等于定长的点的集合

23、垂径定理

24、圆的外切四边形的两组对边的和相等

25、①两圆外离

26、正n边形的每个内角都等于(n-2)×180°/n

27、正n边形的面积Sn=pnxrn/2

28、弧长计算公式:L=n兀R/180——》L=nR

29、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

30、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

31、三角形外角的性质

32、两组对边*行的四边形是*行四边形。

33、定义:有一个角是直角的*行四边形叫做矩形

34、对称性:矩形是轴对称图形也是中心对称图形。

35、s菱=争6(n、6分别为对角线长)

36、对称性:菱形是轴对称图形也是中心对称图形

37、等腰梯形的性质:等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等

38、多边形外角和定理:

39、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

40、扇形面积公式:S扇形=n兀R^2/360=LR/2


数学初中全部重要知识点总结 40句菁华(扩展4)

——高中数学知识点总结 50句菁华

1、函数的极限:

2、参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

3、交集;

4、映射;

5、单位圆中的三角函数线;

6、正弦函数、余弦函数的图象和性质;

7、*面向量的坐标表示;

8、不等式的解法;

9、两条直线*行与垂直的条件;

10、用二元一次不等式表示*面区域;

11、圆的标准方程和一般方程;

12、椭圆的简单几何性质;

13、椭圆的参数方程;

14、双曲线的简单几何性质;

15、两个*面的位置关系;

16、空间向量的坐标表示;

17、直线的方向向量;

18、异面直线的距离;

19、*面的法向量;

20、*行*面间的距离;

21、多面体;

22、棱柱;

23、球。

24、分类计数原理与分步计数原理;

25、排列;

26、组合数的两个性质;

27、判断对应是否为映射时,抓住两点:

28、研究每题都考什么

29、列举法:如果一个集合是有限集,元素又不太多,常常把集合的所有元素都列举出来,写在花括号“{}”内表示这个集合,例如,由两个元素0,1构成的集合可表示为{0,1}。

30、空间点、直线、*面之间的位置关系:

31、求函数的单调性:

32、导数在实际生活中的应用:

33、过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。

34、点P与圆O的位置关系(设P是一点,则PO是点到圆心的距离):

35、在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。

36、不在同一直线上的3个点确定一个圆。

37、直线AB与圆O的位置关系(设OP⊥AB于P,则PO是AB到圆心的距

38、圆与圆的位置关系(设两圆的半径分别为R和r,且R≥r,圆心距为P):

39、一般数列的通项an与前n项和Sn的关系:an=

40、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);

41、等差数列{an}的任意等距离的项构成的数列仍为等差数列。

42、等比数列{an}的任意等距离的项构成的数列仍为等比数列。

43、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,a+d,a+3d

44、关于“属于”的概念

45、不含任何元素的集合叫做空集,记为Φ

46、交集与并集的性质:A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,A∪φ=A,A∪B=B∪A.

47、棱柱S—h—高V=Sh。

48、圆柱r—底半径,h—高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h。

49、球台r1和r2—球台上、下底半径h—高V=πh[3(r12+r22)+h2]/6。

50、桶状体D—桶腹直径d—桶底直径h—桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)。


数学初中全部重要知识点总结 40句菁华(扩展5)

——六年级上册数学知识点总结 40句菁华

1、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母d表示。直径是一个圆内最长的线段。

2、圆心确定圆的位置,半径确定圆的大小。

3、圆周率实验:

4、圆的周长公式:C=πdd=C÷π

5、取近似数的方法:

6、乘积是1的两个数互为倒数 1的倒数是1 0没有倒数

7、两个数相除又叫做两个数的比。比值通常用分数表示,也可以用分数或整数

8、原价×折扣=现价 营业额×税率=应纳税额 本金×利率×时间=利息

9、自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。 一个物体也没有,用0表示。0也是自然数。

10、数的整除:整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。

11、一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、…其中最小的倍数是3 ,没有的倍数。

12、每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。

13、如果两个数是互质数,它们的公因数就是1。

14、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 ……

15、几个数的公因数的个数是有限的,而几个数的公倍数的个数是无限的。

16、一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数是整数部分,小数点右边的数叫做小数部分。

17、分数的意义 :把单位“1”*均分成若干份,表示这样的一份或者几份的数叫做分数。在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”*均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。

18、分子分母是互质数的分数叫做最简分数。

19、整数除法计算法则:

20、圆的面积=圆周率×半径×半径

21、分数乘法:分数的分子与分子相乘,分母与分母相乘,能约分的要先约分。

22、分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零。

23、倒数:乘积是1的两个数叫做互为倒数。

24、分数的倒数:找一个分数的倒数,例如3/4,把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子,则是4/3,3/4是4/3的倒数,也可以说4/3是3/4的倒数。

25、用1计算法:也可以用1去除以这个数,例如0。25,1/0。25等于4,所以0。25的倒数4,因为乘积是1的两个数互为倒数。分数、整数也都使用这种规律。

26、分数除法:分数除法是分数乘法的逆运算。

27、比的基本性质:比的前项和后项都乘以或除以一个不为零的数。比值不变。比的性质用于化简比。

28、条形统计图:可以清楚的看出各种数量的多少。

29、你还能得到哪些信息?

30、文化教育支出了多少元?购买衣物支出了多少元?

31、购买衣物的支出比文化教育支出少百分之几?

32、乘法交换律:

33、整数加法计算法则:

34、小数乘法法则:

35、除数是整数的小数除法计算法则:

36、小数除法法则:

37、、正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a

38、、长方形

39、梯形

40、圆锥体


数学初中全部重要知识点总结 40句菁华(扩展6)

——数学圆知识点总结 40句菁华

1、推论:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

2、推论:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

3、①直线L和⊙O相交d﹤r

4、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线

5、推论:经过圆心且垂直于切线的直线必经过切点

6、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线*分两条切线的夹角

7、推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

8、推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

9、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项

10、定理:

11、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

12、正n边形的面积Sn=pr/2p表示正n边形的周长,r为边心距

13、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此

14、圆有无数条半径,有无数条直径。

15、圆心决定圆的位置,半径决定圆的大小。

16、把圆对折,再对折就能找到圆心。

17、圆是轴对称图形,直径所在的直线是圆的对称轴。圆有无数条对称轴。

18、在同一个圆里,直径的长度是半径的2倍,可以表示为d=2r或r=d/2.

19、圆的周长除以直径的商是一个固定的数,叫做圆周率,用字母表示,计算时通常取3.14.

20、分数乘分数是求一个数的几分之几是多少。

21、反证法

22、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

23、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×n-2180°/n=360°化为n-2k-2=4

24、扇形面积公式:S扇形=n兀R^2/360=LR/2

25、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

26、圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。

27、直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。

28、在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。

29、直线AB与圆O的位置关系(设OPAB于P,则PO是AB到圆心的距离):

30、圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。

31、圆的周长C=2d

32、圆的面积S=πr

33、直线AB与圆O的位置关系(设OP⊥AB于P,则PO是AB到圆心的距离):

34、圆的周长C=2πr=πd

35、切线的性质定理 圆的切线垂直于经过切点的半径

36、推论1 经过圆心且垂直于切线的直线必经过切点

37、圆的外切四边形的两组对边的和相等 外角等于内对角

38、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

39、定理 一条弧所对的圆周角等于它所对的圆心角的一半

40、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径


数学初中全部重要知识点总结 40句菁华(扩展7)

——高中语文知识点总结 40句菁华

1、议论文三要素:论点、论据、论证。

2、五种表达方式:叙述、议论、抒情、说明、描写。

3、六种说明文说明方法:举例子、列数字、打比方、作比较、分类别、下定义。

4、三种说明文说明结构:总分总结构、总分结构、分总结构。

5、三大说明文说明顺序:按时间顺序、按空间顺序、按逻辑顺序。

6、两种基本议论文结构:提出问题——分析问题——解决问题&提出观点——论证观点——总结观点。

7、七种短语类型:并列短语、偏正短语、主谓短语、动宾短语、动补短语、介宾短语、的字短语。

8、三种记叙方法:顺叙、倒叙、插叙。

9、划分文章结构四法:依据表达方式、找寻明暗线索、依据时空顺序、依据逻辑顺序。

10、虽:虽九死而未悔(纵然,即使)

11、尤:忍尤而攘诟(罪过)

12、止息:驰椒丘且焉止息(停下来休息)

13、岌岌:高余冠之岌岌兮(高耸的样子)

14、错:偭(miǎn)规矩而改错(通“措”,措施)

15、邑:忳(tún)郁邑余侘(chà)傺(chì)兮(通“悒”,忧愁苦闷)

16、离:进不入以离尤兮(通“罹”,遭受)

17、章:芳菲菲其弥章(通“彰”,明显,显著)

18、以为:

19、死:伏清白以死直兮(为动用法,为……而死)

20、浩荡:怨灵修之浩荡(①古义:荒唐。②今义:形容水势广阔而壮大)

21、工巧:固时俗之工巧兮(①古义:善于投机取巧。②今义:技艺巧妙)

22、不孚众望:不能使群众信服。

23、管窥蠡测:比喻对事物的观察和了解很狭隘、很片面。

24、讳莫如深:隐瞒的再没有比它更深的了。

25、集腋成裘:积少可以成多。

26、见微知著:见到微小的迹象,就能察知发展的趋势。

27、开门揖盗:比喻引进坏人,自招祸患。

28、大败李信,入两壁,杀七都尉。误:城墙,正:军营。

29、高祖遣使就拜东南道尚书令,封吴王。误:拜见,正:授予官职。

30、师进,次于陉。误:依次,正:临时驻扎。

31、使裕胜也,必德我假道之惠。误:恩德,正:感激。

32、陛下登杀之,非臣所及。误:上去,正:当即。

33、失其所与,不知(知,通“智”)

34、卒起不意,尽失其度(“卒”通“猝”,突然)

35、不可不蚤来(“蚤”通“早”)

36、持千金之资币物(古义:礼品)

37、断其左股(古义:大腿)

38、约为婚姻(古义:结为儿女亲家)

39、修辞手法的作用:它本身的作用,并结合句子语境。

40、设问:引起读者注意和思考。(引起读者对+对象+特性的注意和思考);反问:强调,加强语气等。

相关内容
相关词条
热门标签
全站热门
当前热门
标签索引

精美图文推荐

上一篇 下一篇
返回首页


文案 | 句子 | 文案 | 成语 | 文案| 句子| 教学反思 | 教学设计 | 合同范本 | 工作报告 | 活动策划鄂ICP备2022017863号-1