位置 > 首页 > 句子 >

高三数学知识点总结 40句菁华

日期:2022-12-03 00:00:00

1、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;

2、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;

3、等差数列的常用性质

4、“一个技巧”作差法变形的技巧:作差法中变形是关键,常进行因式分解或配方.

5、判断命题的真假关键是“抓住关联字词”;注意:“不‘或’即‘且’,不‘且’即‘或’”.

6、指数式、对数式,

7、数列的通项、数列项的项数,递推公式与递推数列,数列的通项与数列的前项和公式的关系

8、三角函数性质、图像及其变换:

9、几个概念:零向量、单位向量(与共线的单位向量是,*行(共线)向量(无传递性,是因为有)、相等向量(有传递性)、相反向量、向量垂直、以及一个向量在另一向量方向上的投影(在上的投影是).

10、比较大小的方法和证明不等式的方法主要有:差比较法、商比较法、函数性质法、综合法、分析法

11、相交两直线的夹角和两直线间的到角是两个不同的概念:夹角特指相交两直线所成的较小角,范围是。而其到角是带有方向的角,范围是

12、要重视常见的寻求曲线方程的方法(待定系数法、定义法、直译法、代点法、参数法、交轨法、向量法等),以及如何利用曲线的方程讨论曲线的几何性质(定义法、几何法、代数法、方程函数思想、数形结合思想、分类讨论思想和等价转化思想等),这是解析几何的两类基本问题,也是解析几何的基本出发点.

13、直棱柱、正棱柱、*行六面体、长方体、正方体、正四面体、棱锥、正棱锥关于侧棱、侧面、对角面、*行于底的截面的几何体性质.

14、导数与极值、导数与最值:

15、立体几何(1)、证明:垂直(多考查面面垂直)、*行(2)、求解:主要是夹角问题,包括线面角和面面角。

16、圆方程

17、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。

18、数列的递推公式

19、对数列概念的理解

20、映射:注意①第一个集合中的元素必须有象;②一对一,或多对一。

21、圆锥体:

22、正方体

23、棱台

24、球缺

25、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;

26、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;

27、搞清是什么概率模型,套用哪个公式;

28、已知三边,或两边及其夹角用余弦定理

29、集合元素具有

30、集合表示方法

31、球台

32、圆环体

33、建立适当的坐标系,设出动点M的坐标;

34、证明不等式时,有时构造函数,利用函数单调性很简单。

35、三角函数:(图像、性质、高中重难点,)必考大题:15-20分,并且经常和其他函数混合起来考查。

36、数列:高考必考,17---22分

37、逻辑用语:一般不考,若考也是和集合放一块考

38、推理证明:一般不考,若考会是填空题3、复数:(新课标比老课本难的多,高考必考内容)。

39、空间向量:(利用空间向量可以把立体几何做题简便化)

40、随机变量及其分布:不单独命题


高三数学知识点总结 40句菁华扩展阅读


高三数学知识点总结 40句菁华(扩展1)

——初中数学知识点总结 100句菁华

1、代数式

2、整式与分式

3、方程与方程组

4、解一元二次方程的步骤:

5、过两点有且只有一条直线

6、同角或等角的补角相等

7、过一点有且只有一条直线和已知直线垂直

8、两直线*行,同位角相等

9、两直线*行,同旁内角互补

10、全等三角形的对应边、对应角相等

11、逆定理

12、四边形的外角和等于360°

13、*行四边形性质定理1

14、矩形判定定理1

15、菱形性质定理1

16、正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角

17、*移的作图步骤和方法:

18、等腰梯形判定定理

19、数轴:数轴是规定了原点、正方向、单位长度的一条直线。

20、*行线等分线段定理

21、*行于三角形的一边,并且和其他两边相交的直线,

22、相似三角形判定定理1

23、混合运算法则:先乘方,后乘除,最后加减。

24、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。若|a|=a,则a≥0;若|a|=-a,则a≤0。

25、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)

26、到已知角的两边距离相等的点的轨迹,是这个角的*分线

27、去括号法则

28、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线

29、整式的运算:

30、直线的性质

31、角的性质

32、多边形:由若干条不在同一条直线上的线段首尾顺次相连组成的封闭*面图形叫做多边形。连接不相邻两个顶点的线段叫做多边形的对角线。

33、各种统计图的特点

34、正数和负数的有关概念

35、在把有理数加减混合运算统一为最简的形式,负数前面的加号可以省略不写.

36、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。

37、列一元一次方程解应用题:

38、正数和负数的有关概念

39、三角形外角的性质

40、两组对边*行的四边形是*行四边形。

41、性质:

42、性质:矩形的四个角都是直角,矩形的对角线相等

43、直角三角形斜边上的中线等于斜边的一半。

44、同类项:所含字母相同,并且相同字母的指数也相同的项。与字母前面的系数(≠0)无关。

45、同类项必须同时满足两个条件:(1)所含字母相同;(2)相同字母的次数相同,二者缺一不可、同类项与系数大小、字母的排列顺序无关

46、对称性:等腰梯形是轴对称图形

47、合并同类项:把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。

48、公式与性质

49、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

50、弧长计算公式:L=n兀R/180

51、如果B=0即直线为Ax+C=0,即x=-C/A,它*行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1

52、多边形与多边形的运动图形问题:把一个三角形或四边形沿一定方向运动经过另一个多边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象.

53、求出每段的解析式.

54、对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

55、互为余角:如果两个角的和是一个直角,这两个角叫做互为余角。

56、推论:1)在同圆或等圆中,相等的圆周角所对的弧相等。

57、人们通常用一条直线上的点表示数,这条直线叫做数轴。

58、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值。

59、两个负数,绝对值大的反而小。

60、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

61、有理数

62、四边形

63、图形的轴对称

64、图形的相似

65、过一点有且只有一条直线和已知直线垂直。

66、同旁内角互补,两直线*行。

67、推论1直角三角形的两个锐角互余。

68、推论2三角形的一个外角等于和它不相邻的两个内角的和。

69、推论3三角形的一个外角大于任何一个和它不相邻的内角。

70、角的*分线是到角的两边距离相等的所有点的集合。

71、推论1等腰三角形顶角的*分线*分底边并且垂直于底边。

72、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)。

73、推论1三个角都相等的三角形是等边三角形。

74、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半。

75、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直*分线上。

76、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直*分线。

77、多边形内角和定理n边形的内角的和等于(n-2)×180°。

78、*行四边形性质定理1*行四边形的对角相等。

79、*行四边形性质定理3*行四边形的对角线互相*分。

80、*行四边形判定定理1两组对角分别相等的四边形是*行四边形。

81、菱形面积=对角线乘积的一半,即S=(a×b)÷2。

82、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点*分,那么这两个图形关于这一点对称。

83、等腰梯形性质定理等腰梯形在同一底上的两个角相等。

84、(1)比例的基本性质:

85、(3)等比性质:

86、*行线分线段成比例定理三条*行线截两条直线,所得的对应线段成比例。

87、性质定理2相似三角形周长的比等于相似比。

88、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线。

89、推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

90、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。

91、①直线L和⊙O相交d﹤r。

92、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。

93、①两圆外离d﹥R+r。

94、定理把圆分成n(n≥3):

95、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形。

96、垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。

97、同位角:(在两条直线的同一旁,第三条直线的同一侧)在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。如:∠1和∠5。

98、两条*行线被第三条直线所截,同旁内角互补。(两直线*行,同旁内角相等)

99、命题的概念:判断一件事情的语句,叫做命题。

100、不等式组的解:几个不等式的解集的公共部分,叫做由它们组成的不等式组的解集。解不等式组就是求它的解集。


高三数学知识点总结 40句菁华(扩展2)

——初中数学知识点总结 50句菁华

1、韦达定理

2、同角或等角的余角相等——余角=90-角度。

3、同位角相等,两直线*行

4、全等三角形的对应边、对应角相等

5、斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等

6、等腰三角形的性质定理

7、直角三角形斜边上的中线等于斜边上的一半

8、逆定理

9、*行四边形性质定理1

10、*行四边形判定定理2

11、(1)比例的基本性质:如果a:b=c:d,那么ad=bc

12、相似三角形判定定理1

13、混合运算法则:先乘方,后乘除,最后加减。

14、生活中的立体图形

15、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

16、添括号法则

17、整式的运算:

18、普查与抽样调查

19、频数直方图

20、一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

21、弧长计算公式:L=n兀R/180——》L=nR

22、等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)

23、合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;

24、线段与多边形的运动图形问题:把一条线段沿一定方向运动经过三角形或四边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象.

25、定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。

26、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。

27、三角形

28、过一点有且只有一条直线和已知直线垂直。

29、定理三角形两边的和大于第三边。

30、推论3三角形的一个外角大于任何一个和它不相邻的内角。

31、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等。

32、定理2到一个角的两边的距离相同的点,在这个角的*分线上。

33、菱形判定定理2对角线互相垂直的*行四边形是菱形。

34、定理1关于中心对称的两个图形是全等的

35、推论2经过三角形一边的中点与另一边*行的直线,必*分第三边。

36、相似三角形判定定理1两角对应相等,两三角形相似(ASA)。

37、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。

38、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。

39、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线。

40、定理一条弧所对的圆周角等于它所对的圆心角的一半。

41、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线。

42、圆的外切四边形的两组对边的和相等。

43、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等。

44、构造法

45、几何变换法

46、运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]分配律)

47、垂线特点:过一点有且只有一条直线与已知直线垂直。

48、两条*行线被第三条直线所截,如果同位角相等,那么这两条直线*行。(同位角相等,两直线*行)

49、*面直角坐标系:在*面内画两条互相垂直,并且有公共原点的数轴。这样我们就说在*面上建立了*面直角坐标系,简称直角坐标系。

50、不等式的解法:


高三数学知识点总结 40句菁华(扩展3)

——数学知识点总结 40句菁华

1、类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。

2、基本要求:掌握求直线的方法,熟练转化确定直线方向的不同条件(例如:直线方向向量、法向量、斜率、倾斜角等)。熟练判断点与直线、直线与直线的不同位置,能正确求点到直线的距离、两直线的交点坐标及两直线的夹角大小。

3、基本要求:理解曲线的方程与方程的曲线的意义,利用代数方法判断定点是否在曲线

4、重难点:建立数形结合的概念,理解曲线与方程的对应关系,掌握代数研究几何的方法,掌握把已知条件转化为等价的代数表示,通过代数方法解决几何问题。

5、1柱、锥、台、球的结构特征

6、1.3—2.1.4空间中直线与*面、*面与*面之间的位置关系

7、2.1直线与*面*行的判定

8、判断两*面*行的方法有三种:

9、2.3—2.2.4直线与*面、*面与*面*行的性质

10、定理:如果两个*面同时与第三个*面相交,那么它们的交线*行。

11、3.1直线与*面垂直的判定

12、定义

13、两个*面互相垂直的判定定理:一个*面过另一个*面的垂线,则这两个*面垂直。

14、集合的表示:{…}如:{我校的篮球队员},{太*洋,大西洋,印度洋,北冰洋}

15、集合的分类:

16、“包含”关系—子集

17、圆的内部可以看作是圆心的距离小于半径的点的集合

18、圆的外部可以看作是圆心的距离大于半径的点的集合

19、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线

20、推论1:

21、定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

22、定理:一条弧所对的圆周角等于它所对的圆心角的一半

23、推论:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

24、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线*分两条切线的夹角

25、正n边形的每个内角都等于(n-2)×180°/n

26、正三角形面积√3a2/4a表示边长

27、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此

28、直线方程:高考时不单独命题,易和圆锥曲线结合命题

29、圆方程

30、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。

31、子集:若对x∈A都有x∈B,则AB(或AB);

32、三角形中的动点问题:动点沿三角形的边运动,通过全等或相似,探究构成的新图形与原图形的边或角的关系.

33、求出每段的解析式.

34、圆的方程

35、空间中的*行问题

36、判断函数奇偶性忽略定义域致误

37、三角函数的单调性判断致误

38、忽视零向量致误

39、对数列的定义、性质理解错误

40、忽视三视图中的实、虚线致误


高三数学知识点总结 40句菁华(扩展4)

——数学知识点 100句菁华

1、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。

2、相邻两个质量单位进率是1000。

3、①0和任何数相乘都得0;②1和任何不是0的数相乘还得原来的数。

4、三位数乘一位数:积有可能是三位数,也有可能是四位数。

5、(关于“大约)应用题:

6、正方形的特点:有4个直角,4条边相等。

7、有理数减法法则:减去一个数,等于加上这个数的相反数;即a—b=a+(—b)。

8、有理数乘方的法则:

9、圆内接四边形的性质定理:圆内接四边形的对角互补。(任意一个外角等于它的内对角)

10、大于0的数叫做正数。

11、在正数前面加上负号“-”的数叫做负数。

12、整数和分数统称为有理数。

13、有理数的加法中,两个数相加,交换交换加数的位置,和不变。

14、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)

15、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。

16、统计:2、推理证明:一般不考,若考会是填空题3、复数:(新课标比老课本难的多,高考必考内容)。

17、加数+加数=和

18、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序运算;

19、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;

20、中间有一个0或两个0只读一个“零”;

21、哪一位上乘得的积满几十就向前进几。

22、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;

23、先读万级,再读个级;

24、万级的数要按个级的读法来读,再在后面加上一个“万”字;

25、弄清题意,找出未知数,并用X表示;

26、什么是面积?

27、加法各部分的关系:

28、角

29、(1)什么是互相垂直?什么是垂线?什么是垂足?

30、四边形

31、乘法

32、什么是混循环小数?

33、什么是四则运算?

34、什么是解方程?

35、圆面积公式的推导

36、分数乘整数的计算方法:用分子乘整数的积作分子,分母不变。能约分的可以先约分,再计算。

37、求一个数的几分之几是多少?(用乘法)

38、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。

39、退位减:减法运算中必须向高位借位的减法运算。例:51-22=39

40、结合生活情境,通过自主探究活动,初步认识*行线、垂线;独立思考能力与合作精神得到和谐发展;

41、数级:数级是为便于人们记读*数的一种识读方法,在位值制(数位顺序)的基础上,以三位或四位分级的原则,把数读,写出来。

42、数级分类:

43、学生要明确已知的条件和问题,然后先独立思考,再在小组中交流自己的想法,鼓励学生用不同的方法来解决问题,从而发现(长+宽)﹡2是求长方形周长最简便的方法。不必用公式化的算式去约束学生,他们可以自己喜欢的方法去计算。

44、概念和分类

45、*行公理 经过直线外一点,有且只有一条直线与这条直线*行

46、内错角相等,两直线*行

47、推论 2 有一个角等于60°的等腰三角形是等边三角形

48、矩形性质定理2 矩形的对角线相等

49、矩形判定定理2 对角线相等的*行四边形是矩形

50、菱形面积=对角线乘积的一半,即S=(a×b)÷2

51、*行于三角形的一边,并且和其他两边相交的直线, 所截得的三角形的三边与原三角形三边对应成比例

52、判定定理3 三边对应成比例,两三角形相似(SSS)

53、性质定理3 相似三角形面积的比等于相似比的*方

54、一个加数=和+另一个加数

55、了解除法是乘法的逆运算,因此一道乘法算式能写两道除法算式

56、横式p34、39:

57、把剩下的整十数与个位上的数合起来再被除数去除。

58、p43除法的估算

59、除法的应用p44

60、*方差公式:*方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。

61、一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项、合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。

62、分式混合运算法则:分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简。

63、象限角的*分线:象限角的*分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反。

64、*行某轴的直线:*行某轴的直线,点的坐标有讲究,直线*行X轴,纵坐标相等横不同;直线*行于Y轴,点的横坐标仍照旧。

65、正多边形诀窍歌:份相等分割圆,n值必须大于三,依次连接各分点,内接正n边形在眼前.

66、二次函数抛物线,选定需要三个点,a的正负开口判,c的大小y轴看,△的符号最简便,x轴上数交点,a、b同号轴左边抛物线*移a不变,顶点牵着图象转,三种形式可变换,配方法作用最关键。

67、注意:如果被除数的位数不够,在被除数的末尾用 0 补足。

68、概念:两个运动的物体同时由两地出发相向而行,在途中相遇,这类应用题叫做相遇问题;

69、根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。

70、比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。

71、圆的定义:*面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.

72、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.

73、检验,写答语

74、纯小数:小数的整数部分为零的小数,叫做纯小数。

75、混循环小数:与纯循环小数有唯一的区别,不是从十分位开始循环的循环小数,叫混循环小数。

76、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。

77、关键:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,例如a是b的几分之几,就把数b看作单位“1”.在几个量中,弄清哪一个是单位“1”很重要,否则容易出错误.而百分数应用题中所涉及的百分数,只是分母是100的分数,因而计算的方法和分数应用题是一样的,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系。

78、分散的人或事物聚集到一起;使聚集:紧急~。

79、函数的单调区间理解不准致误

80、三角函数的.单调性判断致误

81、树立信心,养成良好的运算习惯。部分同学*时学习过程中自信心不足,做作业时免不了互相对答案,也不认真找出错误原因并加以改正。“会而不对”是高三数学学习的大忌,常见的有审题失误、计算错误等,*时都以为是粗心,其实这就是一种非常不好的习惯,必须在第一轮复习中逐步克服,否则,后患无穷。可结合*时解题中存在的具体问题,逐题找出原因,看其是行为习惯方面的原因,还是知识方面的缺陷,再有针对性加以解决。必要时作些记录,也就是错题本,每位同学必备的,以便以后查询。

82、直线、*面、简单几何体:空间直线、直线与*面、*面与*面、棱柱、棱锥、球、空间向量

83、概率与统计:概率、分布列、期望、方差、抽样、正态分布

84、算术*方根

85、1柱、锥、台、球的结构特征

86、1.3—2.1.4空间中直线与*面、*面与*面之间的位置关系

87、两个*面*行的判定定理:一个*面内的两条交直线与另一个*面*行,则这两个*面*行。

88、2.3—2.2.4直线与*面、*面与*面*行的性质

89、有理数和无理数统称实数.

90、被开方数一定是非负数.

91、一元二次方程根的情况

92、勾股定理的逆定理

93、*行四边形判定定理1

94、菱形判定定理2

95、等腰梯形判定定理

96、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d

97、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

98、切线长定理

99、相交弦定理

100、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4


高三数学知识点总结 40句菁华(扩展5)

——中考数学知识点 60句菁华

1、一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2.

2、一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7.

3、直角坐标系中,点A(-2,3)在第四象限。

4、当x=3时,函数=的值为1.

5、函数=-8x是一次函数。

6、抛物线=-3(x-2)2-5的开口向下。

7、半圆或直径所对的圆周角是直角。

8、长度相等的两条弧是等弧。

9、垂直于半径的直线是圆的切线。

10、运算法则(加、减、乘、除、乘方、开方)

11、已知:a-b=-2且ab<0,(a≠0,b≠0),判断a、b的符号。

12、代数式与有理式

13、同类二次根式、最简二次根式、分母有理化

14、根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:A. ;B. ;C. .

15、个体:总体中每一个考察对象。

16、垂线及基本性质(利用它证明"直角三角形中斜边大于直角边")

17、对顶角及性质

18、三角形的主要线段

19、三角形的面积

20、重要辅助线

21、特殊四边形

22、重要辅助线:①常连结四边形的对角线;②梯形中常"*移一腰"、"*移对角线"、"作高"、"连结顶点和对腰中点并延长与底边相交"转化为三角形。

23、方程、方程的解(根)、方程组的解、解方程(组)

24、解法:⑴直接开*方法(注意特征)

25、根的判别式:

26、根与系数顶的关系:

27、无理方程

28、增长率问题:

29、不等式的性质:⑴a>b←→a+c>b+c

30、一元一次不等式的解、解一元一次不等式

31、坐标*面内点与有序实数对的对应关系

32、一次函数

33、反比例函数

34、定义:在Rt△ABC中,∠C=Rt∠,则sinA= ;cosA= ;tgA= ;ctgA= .

35、"等对等"定理及其推论

36、与圆有关的角:⑴圆心角定义(等对等定理)

37、相切(交)两圆连心线的性质定理

38、圆的外切四边形、内接四边形的性质

39、弓形面积的计算方法

40、*分已知弧

41、性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(—b/k,0)正比例函数的图像总是过原点。

42、求任意线段的长:√(x1—x2)^2+(y1—y2)^2(注:根号下(x1—x2)与(y1—y2)的*方和)

43、抛物线有一个顶点P,坐标为P(—b/2a,(4ac—b^2)/4a)

44、二次项系数a决定抛物线的开口方向和大小。

45、抛物线y=ax^2+bx+c的图象与坐标轴的交点:

46、二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现。

47、过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。

48、小数乘整数(P2、3):意义--求几个相同加数的和的简便运算。

49、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商 0,点上小数点。如果有余数,要添 0 再除。

50、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

51、公式:

52、三角形、梯形的第二种推导方法老师已讲,自己看书

53、长方形框架拉成*行四边形,周长不变,面积变小。

54、邮政编码:由 6 位组成,前 2 位表示省(直辖市、自治区)

55、3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9

56、在*面直角坐标系中,重心的坐标是顶点坐标的算术*均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:(Z1+Z2+Z3)/3

57、重心是三角形内到三边距离之积最大的点。

58、函数y=-8x是一次函数。

59、抛物线y=-3(x-2)2-5的开口向下。

60、cos30= 。


高三数学知识点总结 40句菁华(扩展6)

——五年级上册数学知识点 50句菁华

1、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。

2、(P23)在实际应用中,小数除法所得的商也可以根据需要用"四舍五入"法保留一定的小数位数求出商的近似数。

3、正确辨认从上面、前面、左面观察到物体的形状。

4、观察物体有诀窍,先数看到几个面,再看它的排列法,画图形时要注意,只分上下画数量。

5、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。②除数不变,被除数扩大,商随着扩大。被除数不变,除数缩小,商扩大。③被除数不变,除数缩小,商扩大。

6、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。

7、理解用字母表示数的意义和作用;

8、小数乘整数中有一个因数是小数,所以积一般来说也是小数。

9、有限小数:小数部分的位数是有限的小数,叫做有限小数。

10、无限小数:小数部分的位数是无限的小数,叫做无限小数。

11、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。

12、读作:x的*方,表示:两个x相乘。

13、梯形面积=(上底+下底)×高÷2字母公式:s=(a+b)×h÷2

14、等底等高的*行四边形面积相等。等底等高的三角形面积相等。

15、邮政编码:由6位组成,前2位表示省(直辖市、自治区),前3位表示邮区,前4位表示县(市),最后2位表示投递局(所)。

16、重叠法;

17、底和高是互相垂直的两条垂线段。(画高时,用虚线画高)

18、三角形面积=底×高÷2(s三=ah÷2)

19、长方形面积=长×宽 S = a b

20、正方形面积=边长×边长 S = a 2

21、5×1.8就是求1.5的1.8倍是多少。

22、圆柱的表面积=上下底面面积+侧面积:

23、循环小数的表示方法:一种是用省略号表示,要写出两个完整的循环节,后面标上省略号。如:0。3636…… 1。587587……另一种是简写的方法:即只写出一组循环节,然后在循环节的第一个数字和最后一个数上面点上圆点。如:12。

24、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。

25、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2

26、公式:长方形:周长=(长+宽)2【长=周长2-宽;宽=周长2-长】 字母公式:C=(a+b)2 面积=长宽 字母公式:S=ab 正方形:周长=边长4 字母公式:C=4a 面积=边长边长 字母公式:S=a *行四边形的面积=底高 字母公式: S=ah 三角形的面积=底高2 【底=面积2高=面积2底】 字母公式: S=ah2 梯形的面积=(上底+下底)高2 字母公式: S=(a+b)h2 【上底=面积2高-下底,下底=面积2高-上底;高=面积2(上底+下底)】

27、(P45)在含有字母的式子里,字母中间的乘号可以记作"·",也可 以省略不写。

28、个数量关系式:加法:和=加数+加数 一个加数=和-另一个加数

29、方程的检验过程:方程左边=……

30、3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9

31、正方形的特点:有4个直角,4条边相等。

32、*行四边形的特点:

33、封闭图形一周的长度,就是它的周长。

34、可以表示起点

35、分母:表示*均分的份数。分子:表示取出的份数。

36、把一个合数用质因数相乘的形式表示出来,叫做分解质因数。 如12=223

37、几个数公有的因数叫做这几个数的公因数。其中最大的一个,叫做它们的最大公因数。

38、约分:把一个分数的分子和分母同时除以公因数,分数值不变,这个过 程叫做约分。计算结果通常用最简分数表示。

39、a×b=c(a、b、c是不为0的整数),c是a和b的倍数,a和b是c的因数。

40、求方程中未知数的过程,叫做解方程。

41、从0、2、3、7、8中选出四个不同的数字,组成一个有因数2、3、5的四位数,其中最大的是( 8730 ),最小的是( 2370 )。 解:有0,3,7,8和0,2,3,7两种可能

42、一个长方体玻璃容器,容器内装有6升水,这时水面高度是15厘米。把一个苹果放入水中,这时容器内水面的高度是16.5厘米。请你求出这个苹果的体积。

43、2 的分数单位是( ),它有( 37 )个这样的分数单位,再加上( 23 )个这样的分数单位等于最小的合数。

44、<<1,□里可以填的自然数有( )。[写出所有可能]

45、某工厂有煤5吨,如果每天烧 吨,这些煤可烧( 5÷ =5÷0.2=25 )天;如果每天烧这些煤的 ,这些煤可烧( 5 )天。

46、小数四则运算顺序和运算定律跟整数是一样的。

47、图形左右*移行数不变;图形上下*移列数不变。

48、小数除以整数的计算方法:小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。

49、有些事件的发生是确定的,有些是不确定的。 可能

50、同一个圆内的所有线段中,圆的直径是最长的。


高三数学知识点总结 40句菁华(扩展7)

——高中数学知识点总结 50句菁华

1、函数的极限:

2、参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

3、交集;

4、映射;

5、单位圆中的三角函数线;

6、正弦函数、余弦函数的图象和性质;

7、*面向量的坐标表示;

8、不等式的解法;

9、两条直线*行与垂直的条件;

10、用二元一次不等式表示*面区域;

11、圆的标准方程和一般方程;

12、椭圆的简单几何性质;

13、椭圆的参数方程;

14、双曲线的简单几何性质;

15、两个*面的位置关系;

16、空间向量的坐标表示;

17、直线的方向向量;

18、异面直线的距离;

19、*面的法向量;

20、*行*面间的距离;

21、多面体;

22、棱柱;

23、球。

24、分类计数原理与分步计数原理;

25、排列;

26、组合数的两个性质;

27、判断对应是否为映射时,抓住两点:

28、研究每题都考什么

29、列举法:如果一个集合是有限集,元素又不太多,常常把集合的所有元素都列举出来,写在花括号“{}”内表示这个集合,例如,由两个元素0,1构成的集合可表示为{0,1}。

30、空间点、直线、*面之间的位置关系:

31、求函数的单调性:

32、导数在实际生活中的应用:

33、过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。

34、点P与圆O的位置关系(设P是一点,则PO是点到圆心的距离):

35、在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。

36、不在同一直线上的3个点确定一个圆。

37、直线AB与圆O的位置关系(设OP⊥AB于P,则PO是AB到圆心的距

38、圆与圆的位置关系(设两圆的半径分别为R和r,且R≥r,圆心距为P):

39、一般数列的通项an与前n项和Sn的关系:an=

40、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);

41、等差数列{an}的任意等距离的项构成的数列仍为等差数列。

42、等比数列{an}的任意等距离的项构成的数列仍为等比数列。

43、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,a+d,a+3d

44、关于“属于”的概念

45、不含任何元素的集合叫做空集,记为Φ

46、交集与并集的性质:A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,A∪φ=A,A∪B=B∪A.

47、棱柱S—h—高V=Sh。

48、圆柱r—底半径,h—高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h。

49、球台r1和r2—球台上、下底半径h—高V=πh[3(r12+r22)+h2]/6。

50、桶状体D—桶腹直径d—桶底直径h—桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)。


高三数学知识点总结 40句菁华(扩展8)

——七年级下册数学知识点 40句菁华

1、都是数字与字母的乘积的代数式叫做单项式。

2、单独一个数或一个字母也是单项式。

3、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

4、单项式的系数是带分数时,应化成假分数。

5、单项式的系数是1或―1时,通常省略数字“1”。

6、多项式的每一项都包括项前面的符号。

7、单项式和多项式统称为整式。

8、整式不一定是单项式。

9、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。即(ab)n=anbn。

10、不同点:

11、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a0=1(a≠0)。

12、单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

13、对于只在一个单项式中含有的字母,连同它的指数一起写在积里,作为积的因式。

14、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。

15、单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。即:m(a+b+c)=ma+mb+mc。

16、*方差公式还能简化两数之积的运算,解这类题,首先看两个数能否转化成

17、括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.

18、整式的乘法公式(两条)。

19、单项式除以单项式,多项式除以单项式(转换单项式除以单项式)。

20、两直线*行的条件:(角的关系线的*行)

21、能判别变量中的自变量和因变量,会列列关系式(因变量=自变量与常量的关系)

22、常见的轴对称图形有:

23、尺规作图:(1)作一线段等已知线段(2)作角已知角(3)作线段垂直*分线

24、必然事件不可能事件,不确定事件

25、“三线八角”①如何由线找角:一看线,二看型。同位角是“F”型;内错角是“Z”型;同旁内角是“U”型。②如何由角找线:组成角的三条线中的公共直线就是截线。

26、*行公理:如果两条直线都和第三条直线*行,那么这两条直线也*行。简述:*行于同一条直线的两条直线*行。补充定理:如果两条直线都和第三条直线垂直,那么这两条直线也*行。简述:垂直于同一条直线的两条直线*行。

27、*行线的判定和性质:判定定理性质定理条件结论条件结论同位角相等两直线*行两直线*行同位角相等内错角相等两直线*行两直线*行内错角相等同旁内角互补两直线*行两直线*行同旁内角互补

28、三角形中的主要线段:三角形的高、角*分线、中线。注意:①三角形的高、角*分线、中线都是线段。②高、角*分线、中线的应用。

29、定义——垂直并且*分一条线段的直线,叫做这条线段的垂直*分线。

30、把一个图形沿着一条某直线折叠,如果直线两旁的部分能够互相重合,那么称这个图形是轴对称图形,这条直线就是对称轴。

31、等腰三角形的两个底角相等(简称“等边对等角”)。

32、性质

33、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。

34、三线八角:对顶角(相等),邻补角(互补),同位角,内错角,同旁内角。

35、垂直三要素:垂直关系,垂直记号,垂足

36、点到直线的距离:直线外一点到这条直线的垂线段的长度。

37、*行线的判定:

38、推论:在同一*面内,如果两条直线都垂直于同一条直线,那么这两条直线*行。

39、实数与数轴上点的关系:

40、注重预习培养自学能力


高三数学知识点总结 40句菁华(扩展9)

——高考数学知识点总结 40句菁华

1、进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解。

2、简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?

3、用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。

4、“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?

5、在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示。

6、两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a

7、解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?

8、在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。

9、你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样的无穷等比数列的所有项的和必定存在?

10、三垂线定理及其逆定理你记住了吗?你知道三垂线定理的关键是什么吗?(一面、四线、三垂直、立柱即面的垂线是关键)一面四直线,立柱是关键,垂直三处见

11、求两条异面直线所成的角、直线与*面所成的角和二面角时,如果所求的角为90°,那么就不要忘了还有一种求角的方法即用证明它们垂直的方法。

12、两条异面直线所成的角的范围:0°<α≤90°< p="">

13、d=R+r两圆外切;两圆的圆心距离之和等于两圆的半径之和。

14、d=R—r两圆内切;两圆的圆心距离之和等于两圆的半径之差。

15、有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。

16、如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题)。这几种基本应用你掌握了吗?

17、三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?

18、在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示。

19、你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样的无穷等比数列的所有项的和必定存在?

20、在三角函数中求一个角时,注意考虑两方面了吗?(先求出某一个三角函数值,再判定角的范围)

21、正弦定理时易忘比值还等于2R。

22、数量积与两个实数乘积的区别:

23、解决线性规划问题的基本步骤是什么?请你注意解题格式和完整的文字表达。(①设出变量,写出目标函数②写出线性约束条件③画出可行域④作出目标函数对应的系列*行线,找到并求出最优解⑦应用题一定要有答。)

24、通径是抛物线的所有焦点弦中最短的弦。(想一想在双曲线中的结论?)

25、在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?椭圆,双曲线二次项系数为零时直线与其只有一个交点,判别式的限制。(求交点,弦长,中点,斜率,对称,存在性问题都在下进行)。

26、你掌握了空间图形在*面上的直观画法吗?(斜二测画法)。

27、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系;

28、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;

29、求概率时,正难则反(根据p1+p2+……+pn=1);

30、注意放回抽样,不放回抽样;

31、在△ABC中,∠C=90°,a=1,c=4,则sinA的值为

32、在△ABC中,若,∠A,∠B为锐角,则∠C的度数是()A、75°B、90°C、105°D、120°

33、已知三边,或两边及其夹角用余弦定理

34、余弦定理对于确定三角形形状非常有用,只需要知道角的余弦值为正,为负,还是为零,就可以确定是钝角。直角还是锐角。

35、导数的概念

36、集合的含义

37、恒成立问题的处理方法:(1)分离参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解;

38、错题本怎么用。和记笔记一样,整理错题不是誊写不是照抄,而是摘抄。你只顾着去采撷问题,就失去了理解和挑选题目的过程,笔记同理,如果老师说什么记什么,那只能说明你这节课根本没听,真正有效率的人,是会把知识简化,把书本读薄的。先学学你能思考到答案的哪一步,学着去偷分。当然,因人而异,如果你觉得还有哪些题需要整理也可以记下来。

39、立几问题的求解分为“作”,“证”,“算”三个环节,你是否只注重了“作”,“算”,而忽视了“证”这一重要环节?

40、二项式系数与展开式某一项的系数易混,第r+1项的二项式系数为。二项式系数最大项与展开式中系数最大项易混。二项式系数最大项为中间一项或两项;展开式中系数最大项的求法要用解不等式组来确定r。

相关内容
相关词条
热门标签
全站热门
当前热门
标签索引

精美图文推荐

上一篇 下一篇
返回首页


文案 | 句子 | 文案 | 成语 | 文案| 句子| 教学反思 | 教学设计 | 合同范本 | 工作报告 | 活动策划鄂ICP备2022017863号-1