位置 > 首页 > 句子 >

数学知识点总结 40句菁华

日期:2022-12-03 00:00:00

1、类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。

2、基本要求:掌握求直线的方法,熟练转化确定直线方向的不同条件(例如:直线方向向量、法向量、斜率、倾斜角等)。熟练判断点与直线、直线与直线的不同位置,能正确求点到直线的距离、两直线的交点坐标及两直线的夹角大小。

3、基本要求:理解曲线的方程与方程的曲线的意义,利用代数方法判断定点是否在曲线

4、重难点:建立数形结合的概念,理解曲线与方程的对应关系,掌握代数研究几何的方法,掌握把已知条件转化为等价的代数表示,通过代数方法解决几何问题。

5、1柱、锥、台、球的结构特征

6、1.3—2.1.4空间中直线与*面、*面与*面之间的位置关系

7、2.1直线与*面*行的判定

8、判断两*面*行的方法有三种:

9、2.3—2.2.4直线与*面、*面与*面*行的性质

10、定理:如果两个*面同时与第三个*面相交,那么它们的交线*行。

11、3.1直线与*面垂直的判定

12、定义

13、两个*面互相垂直的判定定理:一个*面过另一个*面的垂线,则这两个*面垂直。

14、集合的表示:{…}如:{我校的篮球队员},{太*洋,大西洋,印度洋,北冰洋}

15、集合的分类:

16、“包含”关系—子集

17、圆的内部可以看作是圆心的距离小于半径的点的集合

18、圆的外部可以看作是圆心的距离大于半径的点的集合

19、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线

20、推论1:

21、定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

22、定理:一条弧所对的圆周角等于它所对的圆心角的一半

23、推论:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

24、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线*分两条切线的夹角

25、正n边形的每个内角都等于(n-2)×180°/n

26、正三角形面积√3a2/4a表示边长

27、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此

28、直线方程:高考时不单独命题,易和圆锥曲线结合命题

29、圆方程

30、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。

31、子集:若对x∈A都有x∈B,则AB(或AB);

32、三角形中的动点问题:动点沿三角形的边运动,通过全等或相似,探究构成的新图形与原图形的边或角的关系.

33、求出每段的解析式.

34、圆的方程

35、空间中的*行问题

36、判断函数奇偶性忽略定义域致误

37、三角函数的单调性判断致误

38、忽视零向量致误

39、对数列的定义、性质理解错误

40、忽视三视图中的实、虚线致误


数学知识点总结 40句菁华扩展阅读


数学知识点总结 40句菁华(扩展1)

——初中数学知识点总结 100句菁华

1、代数式

2、整式与分式

3、方程与方程组

4、解一元二次方程的步骤:

5、过两点有且只有一条直线

6、同角或等角的补角相等

7、过一点有且只有一条直线和已知直线垂直

8、两直线*行,同位角相等

9、两直线*行,同旁内角互补

10、全等三角形的对应边、对应角相等

11、逆定理

12、四边形的外角和等于360°

13、*行四边形性质定理1

14、矩形判定定理1

15、菱形性质定理1

16、正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角

17、*移的作图步骤和方法:

18、等腰梯形判定定理

19、数轴:数轴是规定了原点、正方向、单位长度的一条直线。

20、*行线等分线段定理

21、*行于三角形的一边,并且和其他两边相交的直线,

22、相似三角形判定定理1

23、混合运算法则:先乘方,后乘除,最后加减。

24、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。若|a|=a,则a≥0;若|a|=-a,则a≤0。

25、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)

26、到已知角的两边距离相等的点的轨迹,是这个角的*分线

27、去括号法则

28、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线

29、整式的运算:

30、直线的性质

31、角的性质

32、多边形:由若干条不在同一条直线上的线段首尾顺次相连组成的封闭*面图形叫做多边形。连接不相邻两个顶点的线段叫做多边形的对角线。

33、各种统计图的特点

34、正数和负数的有关概念

35、在把有理数加减混合运算统一为最简的形式,负数前面的加号可以省略不写.

36、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。

37、列一元一次方程解应用题:

38、正数和负数的有关概念

39、三角形外角的性质

40、两组对边*行的四边形是*行四边形。

41、性质:

42、性质:矩形的四个角都是直角,矩形的对角线相等

43、直角三角形斜边上的中线等于斜边的一半。

44、同类项:所含字母相同,并且相同字母的指数也相同的项。与字母前面的系数(≠0)无关。

45、同类项必须同时满足两个条件:(1)所含字母相同;(2)相同字母的次数相同,二者缺一不可、同类项与系数大小、字母的排列顺序无关

46、对称性:等腰梯形是轴对称图形

47、合并同类项:把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。

48、公式与性质

49、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

50、弧长计算公式:L=n兀R/180

51、如果B=0即直线为Ax+C=0,即x=-C/A,它*行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1

52、多边形与多边形的运动图形问题:把一个三角形或四边形沿一定方向运动经过另一个多边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象.

53、求出每段的解析式.

54、对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

55、互为余角:如果两个角的和是一个直角,这两个角叫做互为余角。

56、推论:1)在同圆或等圆中,相等的圆周角所对的弧相等。

57、人们通常用一条直线上的点表示数,这条直线叫做数轴。

58、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值。

59、两个负数,绝对值大的反而小。

60、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

61、有理数

62、四边形

63、图形的轴对称

64、图形的相似

65、过一点有且只有一条直线和已知直线垂直。

66、同旁内角互补,两直线*行。

67、推论1直角三角形的两个锐角互余。

68、推论2三角形的一个外角等于和它不相邻的两个内角的和。

69、推论3三角形的一个外角大于任何一个和它不相邻的内角。

70、角的*分线是到角的两边距离相等的所有点的集合。

71、推论1等腰三角形顶角的*分线*分底边并且垂直于底边。

72、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)。

73、推论1三个角都相等的三角形是等边三角形。

74、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半。

75、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直*分线上。

76、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直*分线。

77、多边形内角和定理n边形的内角的和等于(n-2)×180°。

78、*行四边形性质定理1*行四边形的对角相等。

79、*行四边形性质定理3*行四边形的对角线互相*分。

80、*行四边形判定定理1两组对角分别相等的四边形是*行四边形。

81、菱形面积=对角线乘积的一半,即S=(a×b)÷2。

82、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点*分,那么这两个图形关于这一点对称。

83、等腰梯形性质定理等腰梯形在同一底上的两个角相等。

84、(1)比例的基本性质:

85、(3)等比性质:

86、*行线分线段成比例定理三条*行线截两条直线,所得的对应线段成比例。

87、性质定理2相似三角形周长的比等于相似比。

88、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线。

89、推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

90、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。

91、①直线L和⊙O相交d﹤r。

92、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。

93、①两圆外离d﹥R+r。

94、定理把圆分成n(n≥3):

95、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形。

96、垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。

97、同位角:(在两条直线的同一旁,第三条直线的同一侧)在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。如:∠1和∠5。

98、两条*行线被第三条直线所截,同旁内角互补。(两直线*行,同旁内角相等)

99、命题的概念:判断一件事情的语句,叫做命题。

100、不等式组的解:几个不等式的解集的公共部分,叫做由它们组成的不等式组的解集。解不等式组就是求它的解集。


数学知识点总结 40句菁华(扩展2)

——初中数学知识点总结 50句菁华

1、韦达定理

2、同角或等角的余角相等——余角=90-角度。

3、同位角相等,两直线*行

4、全等三角形的对应边、对应角相等

5、斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等

6、等腰三角形的性质定理

7、直角三角形斜边上的中线等于斜边上的一半

8、逆定理

9、*行四边形性质定理1

10、*行四边形判定定理2

11、(1)比例的基本性质:如果a:b=c:d,那么ad=bc

12、相似三角形判定定理1

13、混合运算法则:先乘方,后乘除,最后加减。

14、生活中的立体图形

15、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

16、添括号法则

17、整式的运算:

18、普查与抽样调查

19、频数直方图

20、一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

21、弧长计算公式:L=n兀R/180——》L=nR

22、等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)

23、合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;

24、线段与多边形的运动图形问题:把一条线段沿一定方向运动经过三角形或四边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象.

25、定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。

26、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。

27、三角形

28、过一点有且只有一条直线和已知直线垂直。

29、定理三角形两边的和大于第三边。

30、推论3三角形的一个外角大于任何一个和它不相邻的内角。

31、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等。

32、定理2到一个角的两边的距离相同的点,在这个角的*分线上。

33、菱形判定定理2对角线互相垂直的*行四边形是菱形。

34、定理1关于中心对称的两个图形是全等的

35、推论2经过三角形一边的中点与另一边*行的直线,必*分第三边。

36、相似三角形判定定理1两角对应相等,两三角形相似(ASA)。

37、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。

38、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。

39、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线。

40、定理一条弧所对的圆周角等于它所对的圆心角的一半。

41、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线。

42、圆的外切四边形的两组对边的和相等。

43、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等。

44、构造法

45、几何变换法

46、运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]分配律)

47、垂线特点:过一点有且只有一条直线与已知直线垂直。

48、两条*行线被第三条直线所截,如果同位角相等,那么这两条直线*行。(同位角相等,两直线*行)

49、*面直角坐标系:在*面内画两条互相垂直,并且有公共原点的数轴。这样我们就说在*面上建立了*面直角坐标系,简称直角坐标系。

50、不等式的解法:


数学知识点总结 40句菁华(扩展3)

——高考数学知识点总结 40句菁华

1、进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解。

2、简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?

3、用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。

4、“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?

5、在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示。

6、两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a

7、解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?

8、在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。

9、你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样的无穷等比数列的所有项的和必定存在?

10、三垂线定理及其逆定理你记住了吗?你知道三垂线定理的关键是什么吗?(一面、四线、三垂直、立柱即面的垂线是关键)一面四直线,立柱是关键,垂直三处见

11、求两条异面直线所成的角、直线与*面所成的角和二面角时,如果所求的角为90°,那么就不要忘了还有一种求角的方法即用证明它们垂直的方法。

12、两条异面直线所成的角的范围:0°<α≤90°< p="">

13、d=R+r两圆外切;两圆的圆心距离之和等于两圆的半径之和。

14、d=R—r两圆内切;两圆的圆心距离之和等于两圆的半径之差。

15、有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。

16、如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题)。这几种基本应用你掌握了吗?

17、三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?

18、在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示。

19、你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样的无穷等比数列的所有项的和必定存在?

20、在三角函数中求一个角时,注意考虑两方面了吗?(先求出某一个三角函数值,再判定角的范围)

21、正弦定理时易忘比值还等于2R。

22、数量积与两个实数乘积的区别:

23、解决线性规划问题的基本步骤是什么?请你注意解题格式和完整的文字表达。(①设出变量,写出目标函数②写出线性约束条件③画出可行域④作出目标函数对应的系列*行线,找到并求出最优解⑦应用题一定要有答。)

24、通径是抛物线的所有焦点弦中最短的弦。(想一想在双曲线中的结论?)

25、在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?椭圆,双曲线二次项系数为零时直线与其只有一个交点,判别式的限制。(求交点,弦长,中点,斜率,对称,存在性问题都在下进行)。

26、你掌握了空间图形在*面上的直观画法吗?(斜二测画法)。

27、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系;

28、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;

29、求概率时,正难则反(根据p1+p2+……+pn=1);

30、注意放回抽样,不放回抽样;

31、在△ABC中,∠C=90°,a=1,c=4,则sinA的值为

32、在△ABC中,若,∠A,∠B为锐角,则∠C的度数是()A、75°B、90°C、105°D、120°

33、已知三边,或两边及其夹角用余弦定理

34、余弦定理对于确定三角形形状非常有用,只需要知道角的余弦值为正,为负,还是为零,就可以确定是钝角。直角还是锐角。

35、导数的概念

36、集合的含义

37、恒成立问题的处理方法:(1)分离参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解;

38、错题本怎么用。和记笔记一样,整理错题不是誊写不是照抄,而是摘抄。你只顾着去采撷问题,就失去了理解和挑选题目的过程,笔记同理,如果老师说什么记什么,那只能说明你这节课根本没听,真正有效率的人,是会把知识简化,把书本读薄的。先学学你能思考到答案的哪一步,学着去偷分。当然,因人而异,如果你觉得还有哪些题需要整理也可以记下来。

39、立几问题的求解分为“作”,“证”,“算”三个环节,你是否只注重了“作”,“算”,而忽视了“证”这一重要环节?

40、二项式系数与展开式某一项的系数易混,第r+1项的二项式系数为。二项式系数最大项与展开式中系数最大项易混。二项式系数最大项为中间一项或两项;展开式中系数最大项的求法要用解不等式组来确定r。


数学知识点总结 40句菁华(扩展4)

——数学的知识点总结 50句菁华

1、认识“0”的产生,理解“0”的含义,0即可以表示一个物体也没有,也可以表示起点和分界点。

2、有理数分类:整数(正整数、0、负整数)、分数(正分数、负分数)

3、绝对值的三句:正数的绝对值是它本身,

4、乘方:表示n个相同因数的乘积。

5、负数的奇次幂是负数,负数的偶次幂是正数。

6、倒数:若两个数的积等于1,则这两个数互为倒数。

7、绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;

8、有括号:里外(先去小括号、再去中括号、最后去大括号)

9、初步了解加法的含义,会读、写加法算式,感悟把两个数合并在一起求一共是多少,用加法计算;

10、点与圆的位置关系及其数量特征:如果圆的半径为r,点到圆心的距离为d,则

11、圆周角定理;一条弧所对的圆周角等于它所对的圆心角的一半.

12、无理数

13、因式分解,必须进行到每一个多项式因式不能再分解为止。

14、多边形的边:组成多边形的各条线段叫做多边形的边。

15、多边形的周长:多边形各边的长度和叫做多边形的周长。

16、多边形的角:多边形相邻两边所组成的角叫做多边形的内角,简称多边形的'角。

17、顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

18、两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有2个公共点的叫相交。两圆圆心之间的距离叫做圆心距。

19、扇形面积S=n/360=rl/2 5.圆锥侧面积S=rl

20、圆的标准方程

21、圆柱的表面积=圆柱的侧面积+底面积×2即S表=S侧+S底×2或2πr×h+2×π

22、圆锥的体积等于与它等底等高的圆柱体积的三分之一,即V锥=1/3Sh或πr2×h÷

23、多边形的角:多边形相邻两边所组成的角叫做多边形的内角,简称多边形的角。

24、多项式的排列

25、收集数据

26、整理数据

27、描述数据

28、加减:

29、分数乘整数:数形结合、转化化归

30、整数的倒数

31、分数除法:分数除法是分数乘法的逆运算。

32、分数除法应用题:先找单位1。单位1已知,求部分量或对应分率用乘法,求单位1用除法。

33、有理数:

34、绝对值:

35、有理数加法法则:

36、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,。

37、正数和负数的有关概念

38、利用绝对值比较大小

39、在把有理数加减混合运算统一为最简的形式,负数前面的加号可以省略不写.

40、公式。(每两个相邻的时间单位之间的进率是60)

41、1厘米的长度里有(10)小格,每小格的长度(相等),都是(1)毫米。

42、在计算长度时,只有相同的长度单位才能相加减。

43、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。

44、求一个数是另一个数的几倍用除法:一个数÷另一个数=倍数

45、(关于“大约)应用题:

46、有4条直的边和4个角封闭图形我们叫它四边形。

47、四边形的特点:有四条直的边,有四个角。

48、*行四边形的特点:

49、封闭图形一周的长度,就是它的周长。

50、①相同分母的分数相加、减:分母不变,只和分子相加、减。


数学知识点总结 40句菁华(扩展5)

——高中数学知识点总结 50句菁华

1、函数的极限:

2、参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

3、交集;

4、映射;

5、单位圆中的三角函数线;

6、正弦函数、余弦函数的图象和性质;

7、*面向量的坐标表示;

8、不等式的解法;

9、两条直线*行与垂直的条件;

10、用二元一次不等式表示*面区域;

11、圆的标准方程和一般方程;

12、椭圆的简单几何性质;

13、椭圆的参数方程;

14、双曲线的简单几何性质;

15、两个*面的位置关系;

16、空间向量的坐标表示;

17、直线的方向向量;

18、异面直线的距离;

19、*面的法向量;

20、*行*面间的距离;

21、多面体;

22、棱柱;

23、球。

24、分类计数原理与分步计数原理;

25、排列;

26、组合数的两个性质;

27、判断对应是否为映射时,抓住两点:

28、研究每题都考什么

29、列举法:如果一个集合是有限集,元素又不太多,常常把集合的所有元素都列举出来,写在花括号“{}”内表示这个集合,例如,由两个元素0,1构成的集合可表示为{0,1}。

30、空间点、直线、*面之间的位置关系:

31、求函数的单调性:

32、导数在实际生活中的应用:

33、过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。

34、点P与圆O的位置关系(设P是一点,则PO是点到圆心的距离):

35、在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。

36、不在同一直线上的3个点确定一个圆。

37、直线AB与圆O的位置关系(设OP⊥AB于P,则PO是AB到圆心的距

38、圆与圆的位置关系(设两圆的半径分别为R和r,且R≥r,圆心距为P):

39、一般数列的通项an与前n项和Sn的关系:an=

40、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);

41、等差数列{an}的任意等距离的项构成的数列仍为等差数列。

42、等比数列{an}的任意等距离的项构成的数列仍为等比数列。

43、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,a+d,a+3d

44、关于“属于”的概念

45、不含任何元素的集合叫做空集,记为Φ

46、交集与并集的性质:A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,A∪φ=A,A∪B=B∪A.

47、棱柱S—h—高V=Sh。

48、圆柱r—底半径,h—高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h。

49、球台r1和r2—球台上、下底半径h—高V=πh[3(r12+r22)+h2]/6。

50、桶状体D—桶腹直径d—桶底直径h—桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)。


数学知识点总结 40句菁华(扩展6)

——初一数学知识点归纳 40句菁华

1、单项式:;单独的一个数或一个字母也是单项式

2、单项式的次数:;

3、列方程解应用题的一般步骤:

4、一些实际问题中的规律和等量关系:

5、*行四边形的性质,等腰梯形的性质与判定

6、用形状、大小完全相同的三角形可以密铺.因为三角形的内角和为180°,所以,用6个这样的三角形就可以组合起来镶嵌成一个*面.

7、定义:圆是到定点的距离等于定长的点的集合

8、点与圆的位置关系:

9、绝对值:

10、性质:

11、对称性:*行四边形是中心对称图形。

12、有理数(rationalnumber):正整数、负整数、0、正分数、负分数都可以写成分数的形式,这样的数称为有理数。

13、相反数(oppositenumber):绝对值相等,只有负号不同的两个数叫做互为相反数。

14、绝对值(absolutevalue)一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。记做|a|。由绝对值的定义可得:|a-b|表示数轴上a点到b点的距离。一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。

15、倒数

16、有理数的混合运算顺序

17、命题:判断一件事情的语句叫命题。

18、*行公理:经过直线外一点有且只有一条直线与已知直线*行。

19、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

20、三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。

21、多边形:在*面内,由一些线段首尾顺次相接组成的图形叫做多边形。

22、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

23、多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为*面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。

24、*面镶嵌:用一些不重叠摆放的多边形把*面的一部分完全覆盖,叫做用多边形覆盖*面。

25、多项式:几个单项式的和叫做多项式。多项式中每个单项式叫多项式的项,次数项的次数叫多项式的次数。

26、数轴:数轴是规定了原点、正方向、单位长度的一条直线.

27、相反数:

28、2.1三角形的内角

29、3.1多边形

30、3.2多边形的内角和

31、相反数

32、绝对值 |a|0.

33、乘法

34、科学记数法:

35、1 正数与负数

36、2 有理数

37、同号两数相加,取相同的符号,并把绝对值相加。

38、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

39、4 有理数的乘除法

40、等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。


数学知识点总结 40句菁华(扩展7)

——必修一知识点总结 40句菁华

1、水:(1)含量:占细胞总重量的60%-90%,是活细胞中含量是最多的物质。

2、细胞膜功能:

3、细胞学说建立者是施莱登和施旺,细胞学说建立揭示了细胞的统一性和生物体结构的统一性。细胞学说建立过程,是一个在科学探究中开拓、继承、修正和发展的过程,充满耐人寻味的曲折。

4、糖类:

5、水存在形式运送营养物质及代谢废物

6、植物细胞的细胞壁成分为纤维素和果胶,具有支持和保护作用。

7、消化酶、抗体等分泌蛋白合成需要四种细胞器:核糖体,内质网、高尔基体、线粒体。

8、叶绿素a

9、光合作用是指绿色植物通过叶绿体,利用光能,把CO2和H2O转化成储存能量的有机物,并且释放出O2的过程。

10、自养生物:可将CO2、H2O等无机物合成葡萄糖等有机物,如绿色植物,硝化细菌(化能合成)

11、细胞表面积与体积关系限制了细胞的长大,细胞增殖是生物体生长、发育、繁殖遗传的基础。

12、真核细胞的分裂方式减数分裂:生殖细胞(*,卵细胞)增殖

13、细胞分化:个体发育中,由一个或一种细胞增殖产生的后代,在形态、结构和生理功能上发生稳定性差异的过程,它是一种持久性变化,是生物体发育的基础,使多细胞生物体中细胞趋向专门化,有利于提高各种生理功能效率。

14、清朝发展

15、“海禁”的直接原因:担心流亡海上的敌对势力勾结倭寇,危及明朝的统治

16、“闭关锁国”的直接原因:为了对付东南沿海人民的抗清斗争

17、“闭关锁国”的表现:清代初年,厉行海禁、迁界,海外贸易陷入停顿;康熙晚期,禁止商人前往南洋贸易;乾隆开广州通商,特许“十三行”经营管理对外贸易

18、物质的量(n)是表示含有一定数目粒子的集体的物理量。

19、摩尔(mol):把含有6、02×1023个粒子的任何粒子集体计量为1摩尔。

20、标准状况下,Vm=22、4L/mol

21、一定物质的量浓度的配制

22、转动(转换器),换上高倍镜。

23、调节(细准焦螺旋),使物象清晰。

24、调亮视野的两种方法(放大光圈)、(使用凹面镜)。

25、高倍镜:物象(大),视野(暗),看到细胞数目(少)。

26、细胞的发现者及命名者:英国科学家、罗伯特?虎克

27、内容要点:P10,共三点

28、揭示问题:揭示了(细胞统一性,和生物体结构的统一性)。

29、混淆x—t图象和v—t图象,不能区分它们的物理意义

30、不能正确计算图线的斜率、面积

31、在处理汽车刹车、飞机降落等实际问题时注意,汽车、飞机停止后不会后退

32、生物体生命活动的物质基础是:组成生物体的各种化学元素和化合物。

33、自然界中含量最多的元素是O;占人体细胞干重最多的元素是C, 占细胞鲜重最多的元素是O。

34、C、H、O、N四种元素含量比较: 鲜重:O C H N; 干重:C O N H

35、生物界与非生物界具有统一性:组成细胞的元素在无机自然界都可以找到,没有一种是细胞所特有的。

36、在可溶性还原糖、脂肪、蛋白质鉴定中要用显微镜的是:脂肪的鉴定;

37、还原糖鉴定实验所选择的材料:含糖量高,白色或近于白色的植物组织。

38、蛋白质的功能:①构成细胞和生物体的重要物质 ②催化作用,如酶 ③运输作用,如血红蛋白运输氧气、载体蛋白 ④调节作用,如胰岛素、生长激素等 ⑤免疫作用,如抗体。

39、抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).

40、抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x=-b/2a时,y最小(大)值=(4ac-b^2)/4a.


数学知识点总结 40句菁华(扩展8)

——数学初中全部重要知识点总结 40句菁华

1、一元二次方程的二次函数的关系

2、一元二次方程的解法

3、韦达定理

4、同角或等角的补角相等

5、*行公理:经过直线外一点,有且只有一条直线与这条直线*行

6、内错角相等,两直线*行

7、同旁内角互补,两直线*行

8、推论3

9、角边角公理(

10、斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等

11、角的*分线是到角的两边距离相等的所有点的集合

12、推论2等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合,即三线合一;

13、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

14、逆定理

15、勾股定理

16、矩形性质定理2

17、菱形判定定理2

18、等腰梯形的两条对角线相等

19、梯形中位线定理

20、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

21、*行线分线段成比例定理

22、性质定理3

23、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)

24、圆的内部可以看作是圆心的距离小于半径的点的集合

25、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线

26、到已知角的两边距离相等的点的轨迹,是这个角的*分线

27、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线

28、垂径定理

29、切线长定理

30、正三角形面积√3a^2/4

31、圆的有关性质

32、菱形的性质:⑴矩形具有*行四边形的一切性质;

33、公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

34、提取公因式步骤:①确定公因式。②确定商式③公因式与商式写成积的形式。

35、联系:二者之间存在着从属关系;存在条件相同;0的算术*方根与*方根都是0

36、含根号式子的意义:表示a的*方根,表示a的算术*方根,表示a的负的*方根。

37、有理数减法法则:减去一个数,等于加上这个数的相反数;即a—b=a+(—b)。

38、有理数乘法法则:

39、有理数乘方的法则:

40、乘方的定义:


数学知识点总结 40句菁华(扩展9)

——高二数学知识点归纳 40句菁华

1、有穷数列与无穷数列:

2、三个数成等差的设法:a-d,a,a+d;四个数成等差的`设法:a-3d,a-d,,a+d,a+3d

3、三个数成等比的设法:a/q,a,aq;

4、为等差数列,则 (c>0)是等比数列。

5、分组法求数列的和:如an=2n+3n

6、错位相减法求和:如an=(2n-1)2n

7、裂项法求和:如an=1/n(n+1)

8、求数列的最大、最小项的方法:

9、空间两条直线的位置关系:*行、相交、异面的概念;

10、交集;

11、函数;

12、对数;

13、等差数列及其通项公式;

14、弧度制;

15、同角三角函数的基本关系式;

16、两角和与差的正弦、余弦、正切;

17、周期函数;

18、函数的图象;

19、向量;

20、向量的加法与减法;

21、线段的定比分点;

22、不等式;

23、不等式的基本性质;

24、含绝对值的不等式。

25、两条直线的交角;

26、曲线与方程的概念;

27、圆的参数方程。

28、直线的倾斜角的范围是在*面直角坐标系中,对于一条与轴相交的直线,如果把轴绕着交点按逆时针方向转到和直线重合时所转的最小正角记为,就叫做直线的倾斜角。当直线与轴重合或*行时,规定倾斜角为0;

29、斜率:已知直线的倾斜角为α,且α≠90°,则斜率k=tanα.过两点(x1,y1),(x2,y2)的直线的斜率k=(y2-y1)/(x2-x1),另外切线的斜率用求导的方法。

30、圆的标准方程:圆的一般方程:注意能将标准方程化为一般方程

31、双曲线:①方程(a,b>0)注意还有一个;②定义:||PF1|-|PF2||=2a<2c;③e=;④实轴长为2a,虚轴长为2b,焦距为2c;渐进线或c2=a2+b2

32、学会三视图的分析:

33、导数的定义:在点处的导数记作.

34、导数的几何物理意义:曲线在点处切线的斜率

35、四种命题:

36、逻辑联结词:

37、面积、体积最(大)问题

38、不等式对应方程的根:如果一元二次不等式对应的方程的根能够通过因式分解的方法求出来,则根据这两个根的大小进行分类讨论,这时,两个根的大小关系就是分类标准,如果一元二次不等式对应的方程根不能通过因式分解的方法求出来,则根据方程的判别式进行分类讨论。通过不等式练习题能够帮助你更加熟练的运用不等式的知识点,例如用放缩法证明不等式这种技巧以及利用均值不等式求最值的九种技巧这样的解题思路需要再做题的过程中总结出来。

39、*面及基本性质;2.*面图形直观图的画法;3.*面直线;4.直线和*面*行的判定与性质;5.直线和*面垂直的判定与性质;6.三垂线定理及其逆定理;7.两个*面的位置关系;8.空间向量及其加法、减法与数乘;9.空间向量的坐标表示;10.空间向量的数量积;11.直线的方向向量;12.异面直线所成的角;13.异面直线的公垂线;14.异面直线的距离;15.直线和*面垂直的性质;16.*面的法向量;17.点到*面的距离;18.直线和*面所成的角;19.向量在*面内的射影;20.*面与*面*行的性质;21.*行*面间的距离;22.二面角及其*面角;23.两个*面垂直的判定和性质;24.多面体;25.棱柱;26.棱锥;27.正多面体;28.球。

40、余弦定理:在???C中,有a?b?c?2bccos?,b?a?c?2accos?,222222c2?a2?b2?2abcosC.

相关内容
相关词条
热门标签
全站热门
当前热门
标签索引

精美图文推荐

上一篇 下一篇
返回首页


文案 | 句子 | 文案 | 成语 | 文案| 句子| 教学反思 | 教学设计 | 合同范本 | 工作报告 | 活动策划鄂ICP备2022017863号-1