位置 > 首页 > 句子 >

六年级上册数学知识点总结 40句菁华

日期:2022-12-03 00:00:00

1、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母d表示。直径是一个圆内最长的线段。

2、圆心确定圆的位置,半径确定圆的大小。

3、圆周率实验:

4、圆的周长公式:C=πdd=C÷π

5、取近似数的方法:

6、乘积是1的两个数互为倒数 1的倒数是1 0没有倒数

7、两个数相除又叫做两个数的比。比值通常用分数表示,也可以用分数或整数

8、原价×折扣=现价 营业额×税率=应纳税额 本金×利率×时间=利息

9、自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。 一个物体也没有,用0表示。0也是自然数。

10、数的整除:整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。

11、一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、…其中最小的倍数是3 ,没有的倍数。

12、每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。

13、如果两个数是互质数,它们的公因数就是1。

14、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 ……

15、几个数的公因数的个数是有限的,而几个数的公倍数的个数是无限的。

16、一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数是整数部分,小数点右边的数叫做小数部分。

17、分数的意义 :把单位“1”*均分成若干份,表示这样的一份或者几份的数叫做分数。在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”*均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。

18、分子分母是互质数的分数叫做最简分数。

19、整数除法计算法则:

20、圆的面积=圆周率×半径×半径

21、分数乘法:分数的分子与分子相乘,分母与分母相乘,能约分的要先约分。

22、分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零。

23、倒数:乘积是1的两个数叫做互为倒数。

24、分数的倒数:找一个分数的倒数,例如3/4,把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子,则是4/3,3/4是4/3的倒数,也可以说4/3是3/4的倒数。

25、用1计算法:也可以用1去除以这个数,例如0。25,1/0。25等于4,所以0。25的倒数4,因为乘积是1的两个数互为倒数。分数、整数也都使用这种规律。

26、分数除法:分数除法是分数乘法的逆运算。

27、比的基本性质:比的前项和后项都乘以或除以一个不为零的数。比值不变。比的性质用于化简比。

28、条形统计图:可以清楚的看出各种数量的多少。

29、你还能得到哪些信息?

30、文化教育支出了多少元?购买衣物支出了多少元?

31、购买衣物的支出比文化教育支出少百分之几?

32、乘法交换律:

33、整数加法计算法则:

34、小数乘法法则:

35、除数是整数的小数除法计算法则:

36、小数除法法则:

37、、正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a

38、、长方形

39、梯形

40、圆锥体


六年级上册数学知识点总结 40句菁华扩展阅读


六年级上册数学知识点总结 40句菁华(扩展1)

——六年级上册数学知识点 60句菁华

1、整数加法计算法则:

2、?梯形上、下底中点的连线小于两腰和的一半。

3、同一底上的两底角和为90°的梯形,上下底中点的连线等于上下底中点的一半。

4、0没有倒数和负倒数,一个非0的数除以0在实数范围内无意义。

5、已知单位“1”用乘法计算

6、1的倒数是1,0没有倒数。

7、分数除法的意义

8、分数除法的计算方法

9、分数四则混合运算的运算顺序

10、求一个数比另一个数多(或少)几分之几的解题方法是:

11、求*均数问题: 总量÷总份数=每份数

12、工程问题

13、在*面图上标出物*置的方法:

14、圆的位置是由(__)确定的,圆的大小决定于(__)的长短。

15、圆是轴对称图形,它有无数条对称轴。(__)

16、圆是由一条曲线围成的*面图形。而长方形、梯形等都是由几条线段围成的*面图形把圆对折,再对折(对折2次)就能找到圆心。因此,圆是轴对称图形,直径所在的直线是圆的对称轴,圆有无数条对称轴。半圆只有1条对称轴。常见的轴对称图形:等腰三角形(1条)、等边三角形(3条)、等腰梯形(1条)、长方形(2条)、正方形(4条)、圆(无数条)、半圆(1条)。

17、14×8=25.12 3.14×9=28.26 3.14×16=50.24 3.14×25=78.50

18、车轮滚动一周前进的路程就是车轮的周长。

19、加法交换律:a+b=b+a

20、加法结合律:a+b+c=a+(b+c)

21、求一个数是另一个数的几分之几(或百分之几)?

22、比和除法、分数的联系:略

23、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

24、加数+加数=和和-一个加数=另一个加数

25、分数化成百分数:

26、百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。

27、应纳税额的计算:应纳税额=各种收入×税率

28、储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。

29、本金:存入银行的钱叫做本金。

30、利息:取款时银行多支付的钱叫做利息。本息:本金与利息的总和叫做本息。

31、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。

32、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。

33、比和除法、分数的区别:

34、画线段图:

35、当符合什么条件时,错误才能变成正确?

36、比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变

37、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

38、一个数,如果除了1和它本身还有别的因数,这样的数叫做合数,例如 4、6、8、9、12都是合数。

39、小数的意义 :把整数1*均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。

40、被除数÷除数= 被除数/除数

41、加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。

42、减法的性质:

43、带分数加减法的计算方法: 整数部分和分数部分分别相加减,再把所得的数合并起来。

44、、正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a

45、、长方体

46、三角形

47、直径=半径×2 d=2r 半径=直径÷2 r= d÷2

48、分数加减法应用题:分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。

49、分数乘法应用题:是指已知一个数,求它的几分之几是多少的应用题。

50、根据分数与除法的关系,两个数的比也可以写成分数形式。

51、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。

52、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图。

53、能用数对表示物体的位置,正确区分列和行的顺序;

54、使学生理解分数乘整数的意义,掌握分数乘整数的计算方法;

55、比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。

56、比和比例的意义:

57、圆:*面上到定点的距离等于定长的所有点组成的图形叫做圆。

58、半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。

59、百分数与分数的区别:

60、圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧,半圆既不是优弧,也不是劣弧。连接圆上任意两点的线段叫做弦。圆中最长的弦为直径。


六年级上册数学知识点总结 40句菁华(扩展2)

——六年级上册数学知识点 50句菁华

1、整数除法计算法则:

2、除数是小数的除法计算法则:

3、小数除法法则:

4、梯形在同一底上的两角分别是40°和70°,则另一底与腰的和等于这个底的长。

5、分数乘整数的意义

6、已知A比B多(或少)几分之几,求A的解题方法

7、分数除法的意义

8、分数四则混合运算的运算顺序

9、已知一个数的几分之几是多少,求这个数的问题

10、求一个数是另一个数的几倍、几分之几,用除法计算。

11、认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。

12、渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。

13、圆周率表示同一圆内(__)和(__)的倍数关系,它用字母(__)表示,保留两位小数取近似值是(__)。

14、在同一个圆内可以画(__)条直径;如果用圆规画一个直径是10厘米的圆,圆规的两脚间的距离应该是(__)厘米。

15、圆的直径扩大4倍,圆的面积也扩大4倍。(__)

16、圆是由一条曲线围成的*面图形。而长方形、梯形等都是由几条线段围成的*面图形把圆对折,再对折(对折2次)就能找到圆心。因此,圆是轴对称图形,直径所在的直线是圆的对称轴,圆有无数条对称轴。半圆只有1条对称轴。常见的轴对称图形:等腰三角形(1条)、等边三角形(3条)、等腰梯形(1条)、长方形(2条)、正方形(4条)、圆(无数条)、半圆(1条)。

17、圆心决定圆的位置,半径决定圆的大小。

18、任何一个圆的周长除以它直径的商都是一个固定的数,我们把它叫做圆周率。用字母π表示。π是一个无限不循环小数。π=3.141592653……

19、周长相等的*面图形中,圆的面积最大;面积相等的*面图形中,圆的周长最短。

20、车轮滚动一周前进的路程就是车轮的周长。

21、一捆电线绕了9圈,每圈直径都是48厘米,这捆电线长多少米?(圆的周长就是绕一圆的长度,有9圈)

22、减法定律:减法的性质a-b-c=a-(b+c)或a-(b+c) =a-b-c连减等于一次性减除

23、除法的性质:a÷b÷c=a÷(b×c)或a÷(b×c)= a÷b÷c

24、求一个数比另一个数多(或少)几分之几(或百分之几)?

25、常见的小数、百分比和分数的互化。略

26、比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。

27、根据比与除法、分数的关系,可以理解比的后项不能为0。体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。

28、根据比、除法、分数的关系:

29、求每份数的方法和÷分数和=每份数相差数÷相差份数=每份数部分数÷对应份数=每份数

30、分数化成百分数:

31、求一个数是另一个数的百分之几用一个数除以另一个数,结果写为百分数形式。

32、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母。

33、最简分数:分子和分母只有公因数1的分数叫做最简分数。

34、小数与百分数互化的规则:

35、浓度问题

36、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。

37、有关圆的公式:

38、条形统计图:可以清楚的看出数据的多少

39、自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。 一个物体也没有,用0表示。0也是自然数。

40、每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。

41、商不变的规律 :商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。

42、被除数÷除数= 被除数/除数

43、、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a

44、、长方形

45、用份数解:要先求出总份数,再求出每一份是多少,最后分别求出几份是多少。

46、身份证号码:由18位组成,(1)前1、2位数字表示:所在省份的代码;(2)第3、4位数字表示:所在城市的代码;

47、确定物*置的方法:

48、使学生理解倒数的意义,掌握求倒数的方法;

49、倒数:乘积是1的两个数叫做互为倒数。

50、扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径称为圆锥的母线。


六年级上册数学知识点总结 40句菁华(扩展3)

——六年级下册数学知识点归纳 40句菁华

1、圆柱的侧面积=底面周长×高即S侧=Ch或2πr×。

2、正方形判定定理

3、数轴:规定了原点,正方向和单位长度的直线叫数轴。

4、生活中的圆锥:生活中经常出现的圆锥有:沙堆、漏斗、帽子。圆锥在日常生活中也是不可或缺的。

5、求一个数是另一个数的几倍

6、多位数的读法:

7、多位数的大小比较:

8、表示物体个数的数:0、1、2、3、4、5、6 …….叫自然数一个物体也没有:用0来表示。0也是自然数。最小的自然数是0,没有最大的自然数,自然数的个数是无限的。

9、判断两种量成正比例还是成反比例的方法:

10、比例尺:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。

11、判断这两个量的积是否一定,积一定就成反比例关系;反之不成反比例关系。(简说:用乘法,积一定,成反比)

12、小数的倒数。对于可以除尽的数的倒数,可以用1除以这个数求倒数,对于除不尽的数,转换为分数,再按照真、假分数求倒数的方法来进行即可。

13、负数:

14、数轴:略

15、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的

16、圆柱的切割:

17、圆柱的相关计算公式:

18、圆柱与圆锥等底等体积,圆锥的高是圆柱的3倍。

19、负数的定义:在正数前面加上“—”就是负数。

20、33……、

21、判断题

22、读法:在所读数的前面加上“负”

23、正方向:根据题意要求确定正方向,一般以向上或向右为正方向。

24、原点:也就是数字 0 所在的位置,一般根据表示数字的分布情况来确定,如果需要表示的正负数差 不多相等时原点在数轴中间;如果正数比负数多得多原点偏左;如果负数比正数多得多原点偏右。

25、单位长度:由所要表示多的大小来决定刻度之间距离的大小,如果数字偏大刻度距离可以适当小一 些,如果数字偏小刻度距离可以适当大一些。单位长度不一定每个刻度只能表示 1。

26、轴对称:

27、圆柱的侧面展开图是一个长方形,这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。

28、温馨提示:圆柱的底面是圆形,面不是椭圆。

29、圆柱的侧面积=底面周长×高。如果用字母S表示圆柱的侧面积,用C表示底面周长,用h表示高,则圆柱的侧面积的计算公式是S=Ch

30、圆柱的表面积是指圆柱的侧面积和两个底面的面积之和。

31、温馨提示:容积的计算方法和体积的计算方法相同,只是计算容积的数据要从里面测量。

32、两个圆柱的半径比是1:a(a>0),高的比是a:1,则它们的体积之比是1:a。

33、分数乘除法。

34、直线外一点到直线所画的垂直线段最短;这点到这条直线的垂足之间的长度叫距离。

35、一个*行四边形在拉动过程中,面积变化,高变化,周长不变。*行四边形具有易变性。

36、如果不动脑筋找技巧,用我们手中小小的电子计算器做加法计算也非常麻烦.例如,计算9+10+11+12=?就要按11次键(想一想为什么?)像这样,计算:1+2+3+4+……+98=?一共要按多少次键?

37、某人闲着无事,在纸上从9一直写到309,它一共写了多少个数字?

38、在1、2、3、4、5……499、500.问数字“2”在这些数中一共出现了多少次?

39、扇形统计图:

40、能表示出正数、0、负数的直线,我们把它叫做数轴。


六年级上册数学知识点总结 40句菁华(扩展4)

——初一数学上册知识点总结 50句菁华

1、以课本为中心,注重基础

2、课后及时复习,温故而知新

3、点、线、面、体

4、截一个正方体:

5、科学记数法

6、添括号法则

7、直线的性质

8、线段的中点:

9、角的表示

10、方程

11、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一*面内,它们是*面图形(planefigure).

12、几何体简称为体(solid).

13、点动成面,面动成线,线动成体.

14、一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x)=5等都是一元一次方程.

15、方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.

16、去括号(按去括号法则和分配律)

17、答:写出答案(有单位要注明答案)

18、0表示的意义

19、单项式的次数:

20、在含有字母的式子中如果出现乘号,通常将乘号写作“* ”或者省略不写。

21、不等式分类:不等式分为严格不等式与非严格不等式。

22、解不等式可遵循的一些同解原理

23、一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。

24、解不等式组的口诀

25、同位角相等,两直线*行

26、内错角相等,两直线*行

27、定理 三角形两边的和大于第三边

28、推论 三角形两边的差小于第三边

29、三角形内角和定理 三角形三个内角的和等于180

30、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等

31、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等

32、等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)

33、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

34、推论 2 有一个角等于60的等腰三角形是等边三角形

35、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

36、*面上的任意一点都可以用一个有序数对来表示,记为(a,b),a是横坐标,b是纵坐标。

37、多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;

38、n边形的对角线公式:

39、第三边取值范围:

40、等式的性质:

41、规定了原点,单位长度,正方向的直线称为数轴。

42、负数的奇次幂是负数,负数的偶次幂是正数。

43、倒数:若两个数的积等于1,则这两个数互为倒数。

44、数字问题

45、工程问题:

46、方程的概念:

47、解一元一次方程的步骤:

48、检验

49、一个数与0相加,仍得这个数。

50、几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。


六年级上册数学知识点总结 40句菁华(扩展5)

——高中数学知识点总结 50句菁华

1、函数的极限:

2、参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

3、交集;

4、映射;

5、单位圆中的三角函数线;

6、正弦函数、余弦函数的图象和性质;

7、*面向量的坐标表示;

8、不等式的解法;

9、两条直线*行与垂直的条件;

10、用二元一次不等式表示*面区域;

11、圆的标准方程和一般方程;

12、椭圆的简单几何性质;

13、椭圆的参数方程;

14、双曲线的简单几何性质;

15、两个*面的位置关系;

16、空间向量的坐标表示;

17、直线的方向向量;

18、异面直线的距离;

19、*面的法向量;

20、*行*面间的距离;

21、多面体;

22、棱柱;

23、球。

24、分类计数原理与分步计数原理;

25、排列;

26、组合数的两个性质;

27、判断对应是否为映射时,抓住两点:

28、研究每题都考什么

29、列举法:如果一个集合是有限集,元素又不太多,常常把集合的所有元素都列举出来,写在花括号“{}”内表示这个集合,例如,由两个元素0,1构成的集合可表示为{0,1}。

30、空间点、直线、*面之间的位置关系:

31、求函数的单调性:

32、导数在实际生活中的应用:

33、过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。

34、点P与圆O的位置关系(设P是一点,则PO是点到圆心的距离):

35、在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。

36、不在同一直线上的3个点确定一个圆。

37、直线AB与圆O的位置关系(设OP⊥AB于P,则PO是AB到圆心的距

38、圆与圆的位置关系(设两圆的半径分别为R和r,且R≥r,圆心距为P):

39、一般数列的通项an与前n项和Sn的关系:an=

40、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);

41、等差数列{an}的任意等距离的项构成的数列仍为等差数列。

42、等比数列{an}的任意等距离的项构成的数列仍为等比数列。

43、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,a+d,a+3d

44、关于“属于”的概念

45、不含任何元素的集合叫做空集,记为Φ

46、交集与并集的性质:A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,A∪φ=A,A∪B=B∪A.

47、棱柱S—h—高V=Sh。

48、圆柱r—底半径,h—高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h。

49、球台r1和r2—球台上、下底半径h—高V=πh[3(r12+r22)+h2]/6。

50、桶状体D—桶腹直径d—桶底直径h—桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)。


六年级上册数学知识点总结 40句菁华(扩展6)

——七年级下册数学知识点 40句菁华

1、都是数字与字母的乘积的代数式叫做单项式。

2、单独一个数或一个字母也是单项式。

3、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

4、单项式的系数是带分数时,应化成假分数。

5、单项式的系数是1或―1时,通常省略数字“1”。

6、多项式的每一项都包括项前面的符号。

7、单项式和多项式统称为整式。

8、整式不一定是单项式。

9、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。即(ab)n=anbn。

10、不同点:

11、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a0=1(a≠0)。

12、单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

13、对于只在一个单项式中含有的字母,连同它的指数一起写在积里,作为积的因式。

14、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。

15、单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。即:m(a+b+c)=ma+mb+mc。

16、*方差公式还能简化两数之积的运算,解这类题,首先看两个数能否转化成

17、括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.

18、整式的乘法公式(两条)。

19、单项式除以单项式,多项式除以单项式(转换单项式除以单项式)。

20、两直线*行的条件:(角的关系线的*行)

21、能判别变量中的自变量和因变量,会列列关系式(因变量=自变量与常量的关系)

22、常见的轴对称图形有:

23、尺规作图:(1)作一线段等已知线段(2)作角已知角(3)作线段垂直*分线

24、必然事件不可能事件,不确定事件

25、“三线八角”①如何由线找角:一看线,二看型。同位角是“F”型;内错角是“Z”型;同旁内角是“U”型。②如何由角找线:组成角的三条线中的公共直线就是截线。

26、*行公理:如果两条直线都和第三条直线*行,那么这两条直线也*行。简述:*行于同一条直线的两条直线*行。补充定理:如果两条直线都和第三条直线垂直,那么这两条直线也*行。简述:垂直于同一条直线的两条直线*行。

27、*行线的判定和性质:判定定理性质定理条件结论条件结论同位角相等两直线*行两直线*行同位角相等内错角相等两直线*行两直线*行内错角相等同旁内角互补两直线*行两直线*行同旁内角互补

28、三角形中的主要线段:三角形的高、角*分线、中线。注意:①三角形的高、角*分线、中线都是线段。②高、角*分线、中线的应用。

29、定义——垂直并且*分一条线段的直线,叫做这条线段的垂直*分线。

30、把一个图形沿着一条某直线折叠,如果直线两旁的部分能够互相重合,那么称这个图形是轴对称图形,这条直线就是对称轴。

31、等腰三角形的两个底角相等(简称“等边对等角”)。

32、性质

33、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。

34、三线八角:对顶角(相等),邻补角(互补),同位角,内错角,同旁内角。

35、垂直三要素:垂直关系,垂直记号,垂足

36、点到直线的距离:直线外一点到这条直线的垂线段的长度。

37、*行线的判定:

38、推论:在同一*面内,如果两条直线都垂直于同一条直线,那么这两条直线*行。

39、实数与数轴上点的关系:

40、注重预习培养自学能力

相关内容
相关词条
热门标签
全站热门
当前热门
标签索引

精美图文推荐

上一篇 下一篇
返回首页


文案 | 句子 | 文案 | 成语 | 文案| 句子| 教学反思 | 教学设计 | 合同范本 | 工作报告 | 活动策划鄂ICP备2022017863号-1