位置 > 首页 > 句子 >

初中数学知识点总结 100句菁华

日期:2022-12-02 00:00:00

1、代数式

2、整式与分式

3、方程与方程组

4、解一元二次方程的步骤:

5、过两点有且只有一条直线

6、同角或等角的补角相等

7、过一点有且只有一条直线和已知直线垂直

8、两直线*行,同位角相等

9、两直线*行,同旁内角互补

10、全等三角形的对应边、对应角相等

11、逆定理

12、四边形的外角和等于360°

13、*行四边形性质定理1

14、矩形判定定理1

15、菱形性质定理1

16、正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角

17、*移的作图步骤和方法:

18、等腰梯形判定定理

19、数轴:数轴是规定了原点、正方向、单位长度的一条直线。

20、*行线等分线段定理

21、*行于三角形的一边,并且和其他两边相交的直线,

22、相似三角形判定定理1

23、混合运算法则:先乘方,后乘除,最后加减。

24、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。若|a|=a,则a≥0;若|a|=-a,则a≤0。

25、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)

26、到已知角的两边距离相等的点的轨迹,是这个角的*分线

27、去括号法则

28、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线

29、整式的运算:

30、直线的性质

31、角的性质

32、多边形:由若干条不在同一条直线上的线段首尾顺次相连组成的封闭*面图形叫做多边形。连接不相邻两个顶点的线段叫做多边形的对角线。

33、各种统计图的特点

34、正数和负数的有关概念

35、在把有理数加减混合运算统一为最简的形式,负数前面的加号可以省略不写.

36、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。

37、列一元一次方程解应用题:

38、正数和负数的有关概念

39、三角形外角的性质

40、两组对边*行的四边形是*行四边形。

41、性质:

42、性质:矩形的四个角都是直角,矩形的对角线相等

43、直角三角形斜边上的中线等于斜边的一半。

44、同类项:所含字母相同,并且相同字母的指数也相同的项。与字母前面的系数(≠0)无关。

45、同类项必须同时满足两个条件:(1)所含字母相同;(2)相同字母的次数相同,二者缺一不可、同类项与系数大小、字母的排列顺序无关

46、对称性:等腰梯形是轴对称图形

47、合并同类项:把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。

48、公式与性质

49、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

50、弧长计算公式:L=n兀R/180

51、如果B=0即直线为Ax+C=0,即x=-C/A,它*行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1

52、多边形与多边形的运动图形问题:把一个三角形或四边形沿一定方向运动经过另一个多边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象.

53、求出每段的解析式.

54、对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

55、互为余角:如果两个角的和是一个直角,这两个角叫做互为余角。

56、推论:1)在同圆或等圆中,相等的圆周角所对的弧相等。

57、人们通常用一条直线上的点表示数,这条直线叫做数轴。

58、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值。

59、两个负数,绝对值大的反而小。

60、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

61、有理数

62、四边形

63、图形的轴对称

64、图形的相似

65、过一点有且只有一条直线和已知直线垂直。

66、同旁内角互补,两直线*行。

67、推论1直角三角形的两个锐角互余。

68、推论2三角形的一个外角等于和它不相邻的两个内角的和。

69、推论3三角形的一个外角大于任何一个和它不相邻的内角。

70、角的*分线是到角的两边距离相等的所有点的集合。

71、推论1等腰三角形顶角的*分线*分底边并且垂直于底边。

72、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)。

73、推论1三个角都相等的三角形是等边三角形。

74、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半。

75、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直*分线上。

76、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直*分线。

77、多边形内角和定理n边形的内角的和等于(n-2)×180°。

78、*行四边形性质定理1*行四边形的对角相等。

79、*行四边形性质定理3*行四边形的对角线互相*分。

80、*行四边形判定定理1两组对角分别相等的四边形是*行四边形。

81、菱形面积=对角线乘积的一半,即S=(a×b)÷2。

82、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点*分,那么这两个图形关于这一点对称。

83、等腰梯形性质定理等腰梯形在同一底上的两个角相等。

84、(1)比例的基本性质:

85、(3)等比性质:

86、*行线分线段成比例定理三条*行线截两条直线,所得的对应线段成比例。

87、性质定理2相似三角形周长的比等于相似比。

88、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线。

89、推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

90、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。

91、①直线L和⊙O相交d﹤r。

92、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。

93、①两圆外离d﹥R+r。

94、定理把圆分成n(n≥3):

95、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形。

96、垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。

97、同位角:(在两条直线的同一旁,第三条直线的同一侧)在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。如:∠1和∠5。

98、两条*行线被第三条直线所截,同旁内角互补。(两直线*行,同旁内角相等)

99、命题的概念:判断一件事情的语句,叫做命题。

100、不等式组的解:几个不等式的解集的公共部分,叫做由它们组成的不等式组的解集。解不等式组就是求它的解集。


初中数学知识点总结 100句菁华扩展阅读


初中数学知识点总结 100句菁华(扩展1)

——初中数学知识点总结 50句菁华

1、韦达定理

2、同角或等角的余角相等——余角=90-角度。

3、同位角相等,两直线*行

4、全等三角形的对应边、对应角相等

5、斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等

6、等腰三角形的性质定理

7、直角三角形斜边上的中线等于斜边上的一半

8、逆定理

9、*行四边形性质定理1

10、*行四边形判定定理2

11、(1)比例的基本性质:如果a:b=c:d,那么ad=bc

12、相似三角形判定定理1

13、混合运算法则:先乘方,后乘除,最后加减。

14、生活中的立体图形

15、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

16、添括号法则

17、整式的运算:

18、普查与抽样调查

19、频数直方图

20、一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

21、弧长计算公式:L=n兀R/180——》L=nR

22、等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)

23、合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;

24、线段与多边形的运动图形问题:把一条线段沿一定方向运动经过三角形或四边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象.

25、定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。

26、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。

27、三角形

28、过一点有且只有一条直线和已知直线垂直。

29、定理三角形两边的和大于第三边。

30、推论3三角形的一个外角大于任何一个和它不相邻的内角。

31、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等。

32、定理2到一个角的两边的距离相同的点,在这个角的*分线上。

33、菱形判定定理2对角线互相垂直的*行四边形是菱形。

34、定理1关于中心对称的两个图形是全等的

35、推论2经过三角形一边的中点与另一边*行的直线,必*分第三边。

36、相似三角形判定定理1两角对应相等,两三角形相似(ASA)。

37、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。

38、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。

39、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线。

40、定理一条弧所对的圆周角等于它所对的圆心角的一半。

41、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线。

42、圆的外切四边形的两组对边的和相等。

43、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等。

44、构造法

45、几何变换法

46、运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]分配律)

47、垂线特点:过一点有且只有一条直线与已知直线垂直。

48、两条*行线被第三条直线所截,如果同位角相等,那么这两条直线*行。(同位角相等,两直线*行)

49、*面直角坐标系:在*面内画两条互相垂直,并且有公共原点的数轴。这样我们就说在*面上建立了*面直角坐标系,简称直角坐标系。

50、不等式的解法:


初中数学知识点总结 100句菁华(扩展2)

——数学知识点总结 40句菁华

1、类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。

2、基本要求:掌握求直线的方法,熟练转化确定直线方向的不同条件(例如:直线方向向量、法向量、斜率、倾斜角等)。熟练判断点与直线、直线与直线的不同位置,能正确求点到直线的距离、两直线的交点坐标及两直线的夹角大小。

3、基本要求:理解曲线的方程与方程的曲线的意义,利用代数方法判断定点是否在曲线

4、重难点:建立数形结合的概念,理解曲线与方程的对应关系,掌握代数研究几何的方法,掌握把已知条件转化为等价的代数表示,通过代数方法解决几何问题。

5、1柱、锥、台、球的结构特征

6、1.3—2.1.4空间中直线与*面、*面与*面之间的位置关系

7、2.1直线与*面*行的判定

8、判断两*面*行的方法有三种:

9、2.3—2.2.4直线与*面、*面与*面*行的性质

10、定理:如果两个*面同时与第三个*面相交,那么它们的交线*行。

11、3.1直线与*面垂直的判定

12、定义

13、两个*面互相垂直的判定定理:一个*面过另一个*面的垂线,则这两个*面垂直。

14、集合的表示:{…}如:{我校的篮球队员},{太*洋,大西洋,印度洋,北冰洋}

15、集合的分类:

16、“包含”关系—子集

17、圆的内部可以看作是圆心的距离小于半径的点的集合

18、圆的外部可以看作是圆心的距离大于半径的点的集合

19、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线

20、推论1:

21、定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

22、定理:一条弧所对的圆周角等于它所对的圆心角的一半

23、推论:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

24、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线*分两条切线的夹角

25、正n边形的每个内角都等于(n-2)×180°/n

26、正三角形面积√3a2/4a表示边长

27、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此

28、直线方程:高考时不单独命题,易和圆锥曲线结合命题

29、圆方程

30、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。

31、子集:若对x∈A都有x∈B,则AB(或AB);

32、三角形中的动点问题:动点沿三角形的边运动,通过全等或相似,探究构成的新图形与原图形的边或角的关系.

33、求出每段的解析式.

34、圆的方程

35、空间中的*行问题

36、判断函数奇偶性忽略定义域致误

37、三角函数的单调性判断致误

38、忽视零向量致误

39、对数列的定义、性质理解错误

40、忽视三视图中的实、虚线致误


初中数学知识点总结 100句菁华(扩展3)

——高考数学知识点总结 40句菁华

1、进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解。

2、简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?

3、用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。

4、“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?

5、在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示。

6、两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a

7、解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?

8、在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。

9、你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样的无穷等比数列的所有项的和必定存在?

10、三垂线定理及其逆定理你记住了吗?你知道三垂线定理的关键是什么吗?(一面、四线、三垂直、立柱即面的垂线是关键)一面四直线,立柱是关键,垂直三处见

11、求两条异面直线所成的角、直线与*面所成的角和二面角时,如果所求的角为90°,那么就不要忘了还有一种求角的方法即用证明它们垂直的方法。

12、两条异面直线所成的角的范围:0°<α≤90°< p="">

13、d=R+r两圆外切;两圆的圆心距离之和等于两圆的半径之和。

14、d=R—r两圆内切;两圆的圆心距离之和等于两圆的半径之差。

15、有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。

16、如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题)。这几种基本应用你掌握了吗?

17、三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?

18、在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示。

19、你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样的无穷等比数列的所有项的和必定存在?

20、在三角函数中求一个角时,注意考虑两方面了吗?(先求出某一个三角函数值,再判定角的范围)

21、正弦定理时易忘比值还等于2R。

22、数量积与两个实数乘积的区别:

23、解决线性规划问题的基本步骤是什么?请你注意解题格式和完整的文字表达。(①设出变量,写出目标函数②写出线性约束条件③画出可行域④作出目标函数对应的系列*行线,找到并求出最优解⑦应用题一定要有答。)

24、通径是抛物线的所有焦点弦中最短的弦。(想一想在双曲线中的结论?)

25、在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?椭圆,双曲线二次项系数为零时直线与其只有一个交点,判别式的限制。(求交点,弦长,中点,斜率,对称,存在性问题都在下进行)。

26、你掌握了空间图形在*面上的直观画法吗?(斜二测画法)。

27、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系;

28、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;

29、求概率时,正难则反(根据p1+p2+……+pn=1);

30、注意放回抽样,不放回抽样;

31、在△ABC中,∠C=90°,a=1,c=4,则sinA的值为

32、在△ABC中,若,∠A,∠B为锐角,则∠C的度数是()A、75°B、90°C、105°D、120°

33、已知三边,或两边及其夹角用余弦定理

34、余弦定理对于确定三角形形状非常有用,只需要知道角的余弦值为正,为负,还是为零,就可以确定是钝角。直角还是锐角。

35、导数的概念

36、集合的含义

37、恒成立问题的处理方法:(1)分离参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解;

38、错题本怎么用。和记笔记一样,整理错题不是誊写不是照抄,而是摘抄。你只顾着去采撷问题,就失去了理解和挑选题目的过程,笔记同理,如果老师说什么记什么,那只能说明你这节课根本没听,真正有效率的人,是会把知识简化,把书本读薄的。先学学你能思考到答案的哪一步,学着去偷分。当然,因人而异,如果你觉得还有哪些题需要整理也可以记下来。

39、立几问题的求解分为“作”,“证”,“算”三个环节,你是否只注重了“作”,“算”,而忽视了“证”这一重要环节?

40、二项式系数与展开式某一项的系数易混,第r+1项的二项式系数为。二项式系数最大项与展开式中系数最大项易混。二项式系数最大项为中间一项或两项;展开式中系数最大项的求法要用解不等式组来确定r。


初中数学知识点总结 100句菁华(扩展4)

——数学知识点 100句菁华

1、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。

2、相邻两个质量单位进率是1000。

3、①0和任何数相乘都得0;②1和任何不是0的数相乘还得原来的数。

4、三位数乘一位数:积有可能是三位数,也有可能是四位数。

5、(关于“大约)应用题:

6、正方形的特点:有4个直角,4条边相等。

7、有理数减法法则:减去一个数,等于加上这个数的相反数;即a—b=a+(—b)。

8、有理数乘方的法则:

9、圆内接四边形的性质定理:圆内接四边形的对角互补。(任意一个外角等于它的内对角)

10、大于0的数叫做正数。

11、在正数前面加上负号“-”的数叫做负数。

12、整数和分数统称为有理数。

13、有理数的加法中,两个数相加,交换交换加数的位置,和不变。

14、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)

15、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。

16、统计:2、推理证明:一般不考,若考会是填空题3、复数:(新课标比老课本难的多,高考必考内容)。

17、加数+加数=和

18、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序运算;

19、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;

20、中间有一个0或两个0只读一个“零”;

21、哪一位上乘得的积满几十就向前进几。

22、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;

23、先读万级,再读个级;

24、万级的数要按个级的读法来读,再在后面加上一个“万”字;

25、弄清题意,找出未知数,并用X表示;

26、什么是面积?

27、加法各部分的关系:

28、角

29、(1)什么是互相垂直?什么是垂线?什么是垂足?

30、四边形

31、乘法

32、什么是混循环小数?

33、什么是四则运算?

34、什么是解方程?

35、圆面积公式的推导

36、分数乘整数的计算方法:用分子乘整数的积作分子,分母不变。能约分的可以先约分,再计算。

37、求一个数的几分之几是多少?(用乘法)

38、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。

39、退位减:减法运算中必须向高位借位的减法运算。例:51-22=39

40、结合生活情境,通过自主探究活动,初步认识*行线、垂线;独立思考能力与合作精神得到和谐发展;

41、数级:数级是为便于人们记读*数的一种识读方法,在位值制(数位顺序)的基础上,以三位或四位分级的原则,把数读,写出来。

42、数级分类:

43、学生要明确已知的条件和问题,然后先独立思考,再在小组中交流自己的想法,鼓励学生用不同的方法来解决问题,从而发现(长+宽)﹡2是求长方形周长最简便的方法。不必用公式化的算式去约束学生,他们可以自己喜欢的方法去计算。

44、概念和分类

45、*行公理 经过直线外一点,有且只有一条直线与这条直线*行

46、内错角相等,两直线*行

47、推论 2 有一个角等于60°的等腰三角形是等边三角形

48、矩形性质定理2 矩形的对角线相等

49、矩形判定定理2 对角线相等的*行四边形是矩形

50、菱形面积=对角线乘积的一半,即S=(a×b)÷2

51、*行于三角形的一边,并且和其他两边相交的直线, 所截得的三角形的三边与原三角形三边对应成比例

52、判定定理3 三边对应成比例,两三角形相似(SSS)

53、性质定理3 相似三角形面积的比等于相似比的*方

54、一个加数=和+另一个加数

55、了解除法是乘法的逆运算,因此一道乘法算式能写两道除法算式

56、横式p34、39:

57、把剩下的整十数与个位上的数合起来再被除数去除。

58、p43除法的估算

59、除法的应用p44

60、*方差公式:*方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。

61、一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项、合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。

62、分式混合运算法则:分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简。

63、象限角的*分线:象限角的*分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反。

64、*行某轴的直线:*行某轴的直线,点的坐标有讲究,直线*行X轴,纵坐标相等横不同;直线*行于Y轴,点的横坐标仍照旧。

65、正多边形诀窍歌:份相等分割圆,n值必须大于三,依次连接各分点,内接正n边形在眼前.

66、二次函数抛物线,选定需要三个点,a的正负开口判,c的大小y轴看,△的符号最简便,x轴上数交点,a、b同号轴左边抛物线*移a不变,顶点牵着图象转,三种形式可变换,配方法作用最关键。

67、注意:如果被除数的位数不够,在被除数的末尾用 0 补足。

68、概念:两个运动的物体同时由两地出发相向而行,在途中相遇,这类应用题叫做相遇问题;

69、根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。

70、比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。

71、圆的定义:*面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.

72、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.

73、检验,写答语

74、纯小数:小数的整数部分为零的小数,叫做纯小数。

75、混循环小数:与纯循环小数有唯一的区别,不是从十分位开始循环的循环小数,叫混循环小数。

76、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。

77、关键:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,例如a是b的几分之几,就把数b看作单位“1”.在几个量中,弄清哪一个是单位“1”很重要,否则容易出错误.而百分数应用题中所涉及的百分数,只是分母是100的分数,因而计算的方法和分数应用题是一样的,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系。

78、分散的人或事物聚集到一起;使聚集:紧急~。

79、函数的单调区间理解不准致误

80、三角函数的.单调性判断致误

81、树立信心,养成良好的运算习惯。部分同学*时学习过程中自信心不足,做作业时免不了互相对答案,也不认真找出错误原因并加以改正。“会而不对”是高三数学学习的大忌,常见的有审题失误、计算错误等,*时都以为是粗心,其实这就是一种非常不好的习惯,必须在第一轮复习中逐步克服,否则,后患无穷。可结合*时解题中存在的具体问题,逐题找出原因,看其是行为习惯方面的原因,还是知识方面的缺陷,再有针对性加以解决。必要时作些记录,也就是错题本,每位同学必备的,以便以后查询。

82、直线、*面、简单几何体:空间直线、直线与*面、*面与*面、棱柱、棱锥、球、空间向量

83、概率与统计:概率、分布列、期望、方差、抽样、正态分布

84、算术*方根

85、1柱、锥、台、球的结构特征

86、1.3—2.1.4空间中直线与*面、*面与*面之间的位置关系

87、两个*面*行的判定定理:一个*面内的两条交直线与另一个*面*行,则这两个*面*行。

88、2.3—2.2.4直线与*面、*面与*面*行的性质

89、有理数和无理数统称实数.

90、被开方数一定是非负数.

91、一元二次方程根的情况

92、勾股定理的逆定理

93、*行四边形判定定理1

94、菱形判定定理2

95、等腰梯形判定定理

96、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d

97、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

98、切线长定理

99、相交弦定理

100、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4


初中数学知识点总结 100句菁华(扩展5)

——初中化学知识点总结 50句菁华

1、化学用语

2、四种化学反应基本类型:(见文末具体总结)

3、催化剂:在化学变化里能改变其他物质的化学反应速率,而本身的质量和化学性质在化学变化前后都没有变化的物质(一变二不变)

4、溶液:一种或几种物质分散到另一种物质里,形成均一的、稳定的混合物

5、燃烧:可燃物跟氧气发生的一种发光发热的剧烈的氧化反应。

6、盐的溶解性

7、大部分酸及酸性氧化物能溶于水,(酸性氧化物+水→酸)大部分碱性氧化物不溶于水,能溶的有:氧化钡、氧化钾、氧化钙、氧化钠(碱性氧化物+水→碱)

8、地壳中含量最多的非金属元素是氧。

9、日常生活中应用最广泛的金属是铁。

10、还原氧化铜常用的三种还原剂氢气、一氧化碳、碳。

11、碳素钢可分为三种:高碳钢、中碳钢、低碳钢。

12、质量守恒解释的原子三不变:种类不改变、数目不增减、质量不变化

13、使用酒精灯的三禁止:对燃、往燃灯中加酒精、嘴吹灭

14、原子中的三等式:核电荷数=质子数=核外电子数=原子序数

15、通常使用的灭火器有三种:泡沫灭火器;干粉灭火器;液态二氧化碳灭火器。

16、化学变化中一定有物理变化,物理变化中不一定有化学变化。

17、具有相同核电荷数的粒子不一定是同一种元素。

18、溶液中不一定:

19、同种元素在同一化合物中不一定显示一种化合价。如NH4NO3(前面的N为-3价,后面的N为+5价)

20、凡金属与酸发生的置换反应,反应后溶液的质量一定增加。

21、凡是排空气法(无论向上还是向下),都一定要将导气管伸到集气瓶底部。

22、书写化学式时,正价元素不一定都写在左边。如NH3、CH4

23、5g某物质放入95g水中,充分溶解后,所得溶液的溶质质量分数不一定等于5%。

24、注意事项

25、黄色溶液:硫酸铁溶液,氯化铁溶液,硝酸铁溶液

26、紫红色溶液:高锰酸钾溶液

27、构成原子的三种微粒:质子,中子,电子。

28、具有可燃性,还原性的物质:氢气,一氧化碳,单质碳。

29、三大矿物燃料:煤,石油,天然气。(全为混合物)

30、铁的三种氧化物:氧化亚铁,三氧化二铁,四氧化三铁。

31、炼铁的三种氧化物:铁矿石,焦炭,石灰石。

32、碳酸氢钠(nahco3):小苏打

33、明明一瓶水是无色透明的,还说它不一定是纯净物。

34、明明说爆炸是在有限空间内急速燃烧造成的,却说锅炉爆炸不是化学变化。

35、明明铁生锈不发热,非说它产生了热。

36、明明一种溶液能使石蕊试液变蓝,非说它不一定是碱溶液。

37、明明是50毫升水与50毫升酒精倒在一起,非说不到100毫升。

38、明明瓶内只含一种元素,还说它不一定是纯净物

39、灭火的方法之一是降低物质的着火点。

40、含一种元素的物质一定是单质。

41、矿泉水是纯净物,长期饮用对人体有益。

42、任何化学式的书写,正价部分(元素或原子团)一定写前面,负价则放在后头。

43、合金一定由两种或两种以上的金属熔合而成的。

44、紫色石蕊试液遇碱(如氢氧化铜)一定变蓝色,无色酚酞试液遇碱一定变红色。

45、49g氯酸钾与多少克高锰酸钾中的含氧量相等?

46、化学性质:物质在化学变化中表现出来的性质

47、相对原子质量:以一种碳原子的质量的1/12作为标准,其它原子的质量跟它比较所得的值

48、白色固体:MgO、P2O5、CaO、 NaOH、Ca(OH)2、KClO3、KCl、Na2CO3、NaCl、无水CuSO4;铁、镁为银白色(汞为银白色液态)

49、黑色固体:石墨、炭粉、铁粉、CuO、MnO2、Fe3O4▲KMnO4为紫黑色

50、相对分子质量最小的氧化物是水。 最简单的有机化合物CH4


初中数学知识点总结 100句菁华(扩展6)

——初中数学重要知识点总结 40句菁华

1、不等式:用不等号表示不等关系的式子,叫做不等式。

2、解一元一次不等式的一般步骤:1去分母2去括号3移项4合并同类项5将x项的系数化为1。

3、3实际问题与一元二次方程一节安排了四个探究栏目,分别探究传播、成本下降率、面积、匀变速运动等问题,使学生进一步体会方程是刻画现实世界的一个有效的数学模型。

4、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。

5、有理数:

6、实数

7、整式与分式

8、方程与方程组

9、同角或等角的补角相等

10、过一点有且只有一条直线和已知直线垂直

11、*行公理:经过直线外一点,有且只有一条直线与这条直线*行

12、如果两条直线都和第三条直线*行,这两条直线也互相*行

13、内错角相等,两直线*行

14、推论3

15、边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等

16、角边角公理(

17、角的*分线是到角的两边距离相等的所有点的集合

18、推论2等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合,即三线合一;

19、直角三角形斜边上的中线等于斜边上的一半

20、多边形内角和定理

21、矩形性质定理1

22、矩形性质定理2

23、菱形性质定理1

24、正方形性质定理1

25、三角形中位线定理

26、判定定理3

27、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)

28、到已知角的两边距离相等的点的轨迹,是这个角的*分线

29、垂径定理

30、圆的外切四边形的两组对边的和相等

31、如果两个圆相切,那么切点一定在连心线上

32、正n边形的面积Sn=pn*rn/2

33、正三角形面积√3a^2/4

34、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

35、推论2经过切点且垂直于切线的直线必经过圆心

36、切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线*分两条切线的夹角

37、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

38、扇形面积公式:S扇形=n兀R^2/360=LR/2

39、内公切线长=d-(R-r)外公切线长=d-(R+r)

40、弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r


初中数学知识点总结 100句菁华(扩展7)

——初中生物重要知识点总结 40句菁华

1、苔藓植物大多数生活在陆地上的潮湿环境(葫芦藓、地钱、树干苔藓)。

2、实施计划

3、生物成分: 生产者(主要指绿色植物) 消费者(主要指动物)分解者(主要指细菌和真菌等微生物)

4、右手握镜臂,左手托住镜座。

5、把显微镜放在实验台距边缘(7厘米)左右处,略偏(左)。安装好(目镜)和(物镜)。

6、或用镊子取一片黑藻的细嫩小叶,放在载玻片上的水滴中,盖好盖玻片,制成临时装片。

7、观察动物细胞中制作人的口腔上皮细胞与制作植物细胞临时装片不同之处:

8、植物细胞的各种结构分别具有各自的功能,它们协调配合,共同完成细胞的生命活动。

9、运动系统在神经系统控制和调节下,以及消化系统、呼吸系统、循环系统的配合下(提供能量,能量来自有机物的分解)共同完成运动。运动能力发达,利于捕食和避敌,以适应复杂多变的环境。

10、脱臼:关节头从关节窝滑脱出来。(由于进行体育运动或从事体力劳动,因用力过猛或不慎摔倒所致。)

11、红细胞呈两面凹的圆饼状,有利于(输送氧气)

12、流感病毒有200多个变种,病毒的繁殖方式是(自我复制),而不是分裂。接种一种流感病毒的疫苗,也可能患流感,因为(抗体具有专一性,抗体与在、抗原具有一一对应性)

13、肾小管的重吸收有一定的限度

14、吸气时,呼吸肌(肋间肌和膈肌的总称)处在(收缩)状态

15、细菌的生殖方式:分裂生殖(芽孢是细菌的休眠体)

16、病毒的生活:寄生在活细胞中,靠自己的遗传信息制造新病毒

17、保护生物多样性最有效的措施是建立自然保护区。

18、生物能排出身体内的废物。[动物排废方式:出汗、呼出气体、排尿。植物排废方式:落叶。]

19、生物对环境的适应和影响:

20、食物链和食物网:生产者和消费者之间的关系,主要是吃与被吃的关系,这样就形成了食物链。一个生态系统中,往往有很多条食物链,他们彼此交错连接,形成了食物网。生态系统中的物质和能量就是沿着食物链和食物网流动的。

21、列举不同的生态系统:

22、蕨类植物出现根、茎、叶等器官的分化,而且还具有输导组织、机械组织,所以植株比较高大。

23、蕨类植物的经济意义在于:①有些可食用;②有些可供药;③有些可供观赏;④有些可作为优良的绿肥和饲料;⑤古代的蕨类植物的遗体经过漫长的年代,变成了煤。

24、藻类植物的主要特征:结构简单,是单细胞或多细胞个体,无根、茎、叶等器官的分化;细胞里有叶绿体,能进行光合作用;大都生活在水中。

25、藻类植物通过光合作用制造的有机物可以作为鱼的饵料,放出的氧气除供鱼类呼吸外,而且是大气中氧气的重要来源。

26、记住常见的裸子植物和被子植物。

27、种子的萌发环境条件:适宜的温度、一定的水分、充足的空气

28、叶片的结构:表皮(分上下表皮)、叶肉、叶脉、

29、光合作用意义:绿色植物通过光合作用制造的有机物,不仅满足了自身生长、发育、繁殖的需要,而且为生物圈中的其他生物提供了基本的食物来源、氧气来源、能量来源。

30、绿色植物对有机物的利用,用来构建之物体;为植物的生命活动提供能量

31、呼吸作用与生产生活的关系:中耕松土、及时排涝都是为了使空气流通,以利于植物根部进行呼吸作用。植物的呼吸作用要分解有机物,因此在储存植物的种子或其他器官时,要设法降低呼吸作用,降低温度、减少含水量、降低氧气浓度、增大二氧化碳浓度等都可抑制呼吸作用。

32、我国森林覆盖率16.55%,

33、食物链的写法(生产者——消费者…)食物网

34、树立保护生态系统的意识

35、所有生物由细胞构成,病毒例外,但是病毒是生物。细胞是生命活动的基本结构和功能单位。

36、细胞分裂的过程:细胞核先分裂,接着细胞质分裂,出现新的细胞膜,植物细胞出现新的细胞壁。

37、生物体的各种组织是由细胞分裂,分化形成的,分裂的结果形成组织。生物体由小到大,表现出的生长现象,也是由于细胞的(分裂,分化)形成的。

38、绿色开花植物体的结构层次:细胞——组织——器官——植物体(也是微观到宏观的过程)

39、动物体的结构层次:细胞——组织——器官——系统——人体

40、植物体的器官:营养器官:根、茎、叶;生殖器官:花、果实、种子


初中数学知识点总结 100句菁华(扩展8)

——数学圆知识点总结 40句菁华

1、推论:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

2、推论:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

3、①直线L和⊙O相交d﹤r

4、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线

5、推论:经过圆心且垂直于切线的直线必经过切点

6、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线*分两条切线的夹角

7、推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

8、推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

9、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项

10、定理:

11、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

12、正n边形的面积Sn=pr/2p表示正n边形的周长,r为边心距

13、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此

14、圆有无数条半径,有无数条直径。

15、圆心决定圆的位置,半径决定圆的大小。

16、把圆对折,再对折就能找到圆心。

17、圆是轴对称图形,直径所在的直线是圆的对称轴。圆有无数条对称轴。

18、在同一个圆里,直径的长度是半径的2倍,可以表示为d=2r或r=d/2.

19、圆的周长除以直径的商是一个固定的数,叫做圆周率,用字母表示,计算时通常取3.14.

20、分数乘分数是求一个数的几分之几是多少。

21、反证法

22、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

23、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×n-2180°/n=360°化为n-2k-2=4

24、扇形面积公式:S扇形=n兀R^2/360=LR/2

25、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

26、圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。

27、直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。

28、在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。

29、直线AB与圆O的位置关系(设OPAB于P,则PO是AB到圆心的距离):

30、圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。

31、圆的周长C=2d

32、圆的面积S=πr

33、直线AB与圆O的位置关系(设OP⊥AB于P,则PO是AB到圆心的距离):

34、圆的周长C=2πr=πd

35、切线的性质定理 圆的切线垂直于经过切点的半径

36、推论1 经过圆心且垂直于切线的直线必经过切点

37、圆的外切四边形的两组对边的和相等 外角等于内对角

38、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

39、定理 一条弧所对的圆周角等于它所对的圆心角的一半

40、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径


初中数学知识点总结 100句菁华(扩展9)

——高二数学知识点归纳 40句菁华

1、有穷数列与无穷数列:

2、三个数成等差的设法:a-d,a,a+d;四个数成等差的`设法:a-3d,a-d,,a+d,a+3d

3、三个数成等比的设法:a/q,a,aq;

4、为等差数列,则 (c>0)是等比数列。

5、分组法求数列的和:如an=2n+3n

6、错位相减法求和:如an=(2n-1)2n

7、裂项法求和:如an=1/n(n+1)

8、求数列的最大、最小项的方法:

9、空间两条直线的位置关系:*行、相交、异面的概念;

10、交集;

11、函数;

12、对数;

13、等差数列及其通项公式;

14、弧度制;

15、同角三角函数的基本关系式;

16、两角和与差的正弦、余弦、正切;

17、周期函数;

18、函数的图象;

19、向量;

20、向量的加法与减法;

21、线段的定比分点;

22、不等式;

23、不等式的基本性质;

24、含绝对值的不等式。

25、两条直线的交角;

26、曲线与方程的概念;

27、圆的参数方程。

28、直线的倾斜角的范围是在*面直角坐标系中,对于一条与轴相交的直线,如果把轴绕着交点按逆时针方向转到和直线重合时所转的最小正角记为,就叫做直线的倾斜角。当直线与轴重合或*行时,规定倾斜角为0;

29、斜率:已知直线的倾斜角为α,且α≠90°,则斜率k=tanα.过两点(x1,y1),(x2,y2)的直线的斜率k=(y2-y1)/(x2-x1),另外切线的斜率用求导的方法。

30、圆的标准方程:圆的一般方程:注意能将标准方程化为一般方程

31、双曲线:①方程(a,b>0)注意还有一个;②定义:||PF1|-|PF2||=2a<2c;③e=;④实轴长为2a,虚轴长为2b,焦距为2c;渐进线或c2=a2+b2

32、学会三视图的分析:

33、导数的定义:在点处的导数记作.

34、导数的几何物理意义:曲线在点处切线的斜率

35、四种命题:

36、逻辑联结词:

37、面积、体积最(大)问题

38、不等式对应方程的根:如果一元二次不等式对应的方程的根能够通过因式分解的方法求出来,则根据这两个根的大小进行分类讨论,这时,两个根的大小关系就是分类标准,如果一元二次不等式对应的方程根不能通过因式分解的方法求出来,则根据方程的判别式进行分类讨论。通过不等式练习题能够帮助你更加熟练的运用不等式的知识点,例如用放缩法证明不等式这种技巧以及利用均值不等式求最值的九种技巧这样的解题思路需要再做题的过程中总结出来。

39、*面及基本性质;2.*面图形直观图的画法;3.*面直线;4.直线和*面*行的判定与性质;5.直线和*面垂直的判定与性质;6.三垂线定理及其逆定理;7.两个*面的位置关系;8.空间向量及其加法、减法与数乘;9.空间向量的坐标表示;10.空间向量的数量积;11.直线的方向向量;12.异面直线所成的角;13.异面直线的公垂线;14.异面直线的距离;15.直线和*面垂直的性质;16.*面的法向量;17.点到*面的距离;18.直线和*面所成的角;19.向量在*面内的射影;20.*面与*面*行的性质;21.*行*面间的距离;22.二面角及其*面角;23.两个*面垂直的判定和性质;24.多面体;25.棱柱;26.棱锥;27.正多面体;28.球。

40、余弦定理:在???C中,有a?b?c?2bccos?,b?a?c?2accos?,222222c2?a2?b2?2abcosC.


初中数学知识点总结 100句菁华(扩展10)

——高三数学知识点总结 40句菁华

1、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;

2、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;

3、等差数列的常用性质

4、“一个技巧”作差法变形的技巧:作差法中变形是关键,常进行因式分解或配方.

5、判断命题的真假关键是“抓住关联字词”;注意:“不‘或’即‘且’,不‘且’即‘或’”.

6、指数式、对数式,

7、数列的通项、数列项的项数,递推公式与递推数列,数列的通项与数列的前项和公式的关系

8、三角函数性质、图像及其变换:

9、几个概念:零向量、单位向量(与共线的单位向量是,*行(共线)向量(无传递性,是因为有)、相等向量(有传递性)、相反向量、向量垂直、以及一个向量在另一向量方向上的投影(在上的投影是).

10、比较大小的方法和证明不等式的方法主要有:差比较法、商比较法、函数性质法、综合法、分析法

11、相交两直线的夹角和两直线间的到角是两个不同的概念:夹角特指相交两直线所成的较小角,范围是。而其到角是带有方向的角,范围是

12、要重视常见的寻求曲线方程的方法(待定系数法、定义法、直译法、代点法、参数法、交轨法、向量法等),以及如何利用曲线的方程讨论曲线的几何性质(定义法、几何法、代数法、方程函数思想、数形结合思想、分类讨论思想和等价转化思想等),这是解析几何的两类基本问题,也是解析几何的基本出发点.

13、直棱柱、正棱柱、*行六面体、长方体、正方体、正四面体、棱锥、正棱锥关于侧棱、侧面、对角面、*行于底的截面的几何体性质.

14、导数与极值、导数与最值:

15、立体几何(1)、证明:垂直(多考查面面垂直)、*行(2)、求解:主要是夹角问题,包括线面角和面面角。

16、圆方程

17、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。

18、数列的递推公式

19、对数列概念的理解

20、映射:注意①第一个集合中的元素必须有象;②一对一,或多对一。

21、圆锥体:

22、正方体

23、棱台

24、球缺

25、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;

26、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;

27、搞清是什么概率模型,套用哪个公式;

28、已知三边,或两边及其夹角用余弦定理

29、集合元素具有

30、集合表示方法

31、球台

32、圆环体

33、建立适当的坐标系,设出动点M的坐标;

34、证明不等式时,有时构造函数,利用函数单调性很简单。

35、三角函数:(图像、性质、高中重难点,)必考大题:15-20分,并且经常和其他函数混合起来考查。

36、数列:高考必考,17---22分

37、逻辑用语:一般不考,若考也是和集合放一块考

38、推理证明:一般不考,若考会是填空题3、复数:(新课标比老课本难的多,高考必考内容)。

39、空间向量:(利用空间向量可以把立体几何做题简便化)

40、随机变量及其分布:不单独命题

相关内容
相关词条
热门标签
全站热门
当前热门
标签索引

精美图文推荐

上一篇 下一篇
返回首页


文案 | 句子 | 文案 | 成语 | 文案| 句子| 教学反思 | 教学设计 | 合同范本 | 工作报告 | 活动策划鄂ICP备2022017863号-1