位置 > 首页 > 句子 >

五年级上册数学知识点 60句菁华

日期:2022-12-02 00:00:00

1、(P23)在实际应用中,小数除法所得的商也可以根据需要用"四舍五入"法保留一定的小数位数求出商的近似数。

2、从不同位置观察同一个物体,所看到的图形有可能一样,也有可能不一样。

3、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。

4、计算小数乘法末尾对齐,按整数乘法法则进行计算。

5、用计算器来验算

6、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:2.6÷1.3表示已知两个因数的积2.6与其中的一个因数1.3,求另一个因数的运算。

7、把下面的数量关系补充完整。

8、*行四边形面积=底×高(s*=ah)

9、三角形面积=底×高÷2(s三=ah÷2)

10、正方形周长=边长×4 C = 4 a

11、梯形下底=梯形面积×2÷高-上底 b = 2 S ÷ h - a

12、1*方千米=100公顷=1000000*方米

13、把一个物体或一个图形*均分成几份,取其中的几份,就是这个物体或图形的几分之几。

14、①分子相同,分母小的分数反而大,分母大的分数反而小。

15、小数乘整数(P2、3):意义--求几个相同加数的和的简便运算。

16、(P11)小数四则运算顺序跟整数是一样的。

17、运算定律和性质:

18、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数( 0除外),商不变。②除数不变,被除数扩大,商随着扩大。被除数不变,除数缩小,商扩大。 ③被除数不变,除数缩小,商扩大。

19、圆柱的体积=底面积×高:V=ShV=πrh=π(d÷2)h=π(C÷2÷π)h。

20、循环小数的表示方法:一种是用省略号表示,要写出两个完整的循环节,后面标上省略号。如:0。3636…… 1。587587……另一种是简写的方法:即只写出一组循环节,然后在循环节的第一个数字和最后一个数上面点上圆点。如:12。

21、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。

22、1厘米的长度里有(10)小格,每小格的长度(相等),都是(1)毫米。

23、长方形的面积=长×宽:S=ab。

24、梯形的面积=(上底+下底)×高÷2:S=(a+b)h÷2。

25、圆的周长=圆周率×直径=圆周率×半径×2:c=πd=2πr。

26、长方形的面积=长×宽S=ab

27、正方形的面积=边长×边长S=a.a= a

28、长方体的表面积=(长×宽+长×高+宽×高) ×2公式:S=(a×b+a×c+b×c)×2

29、长方体的体积=长×宽×高公式:V = abh

30、正方体的表面积=棱长×棱长×6公式:S=6a2

31、长方体(或正方体)的体积=底面积×高公式:V = abh

32、对*移和旋转现象的初步认识:

33、三角形面积公式推导:旋转 *行四边形可以转化成一个长方形; 两个完全一样的三角形可以拼成一个*行四边形, 长方形的长相当于*行四边形的底; *行四边形的底相当于三角形的底; 长方形的宽相当于*行四边形的高; *行四边形的高相当于三角形的高; 长方形的面积等于*行四边形的面积, *行四边形的面积等于三角形面积的2倍,因为长方形面积=长宽,所以*行四边形面积=底高。 因为*行四边形面积=底高,所以三角形面积=底高2

34、梯形面积公式推导:旋转

35、(P45)在含有字母的式子里,字母中间的乘号可以记作"·",也可 以省略不写。

36、所有的方程都是等式,但等式不一定都是方程。

37、方程的检验过程:方程左边=……

38、三角形、梯形的第二种推导方法老师已讲,自己看书

39、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一 般水*更合适。

40、5 4 0 0 1

41、3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9

42、封闭图形一周的长度,就是它的周长。

43、在做题时,我们要注意中间的0,因为是连续退位的,所以从百位退1到十位当10后,还要从十位退1当10,借给个位,那么十位只剩下9,而不是10。(两个三位数相加的和:可能是三位数,也有可能是四位数。)

44、公式被减数=减数+差和=加数+另一个加数

45、公式

46、分数:把单位1*均分成若干份,表示这样的一份或几份的数,叫做分数。

47、自然数按因数的个数来分:质数、合数、1.

48、方程一定是等式;等式不一定是方程。等式>方程

49、等式两边同时加上或减去同一个数,所得结果仍然是等式。这是等式的性质。

50、有两个数都是合数,又是互质数,它们的最小公倍数是90,这两个数是( 9和10 )。

51、几个数的( 最大公因 )数的所有( 因 )数,都是这几个数的公因数;几个数的( 最小公倍 )数的所有( 倍 )数,都是这几个数的公倍数。

52、用若干个完全一样的小正方体,拼成一个较大的正方体,至少需这样的小正方体( 8 )个,此时所拼成的较大正方体的表面积是原来每个小正方体表面积的( (2×2×6)÷(1×1×6)=4 )倍。

53、两个完全一样的正方体拼成一个长方体,长方体的表面积是40*方厘米,每个小正方体的表面积是多少*方厘米?

54、某工厂有煤5吨,如果每天烧 吨,这些煤可烧( 5÷ =5÷0.2=25 )天;如果每天烧这些煤的 ,这些煤可烧( 5 )天。

55、数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右分别为列数和行数,即“先列后行”。

56、车轮滚动一周前进的路程就是车轮的周长。

57、常用的3.14的倍数:

58、圆的面积公式:S圆=r2。圆的面积是半径*方的倍。

59、大小两个圆比较,半径的倍数=直径的倍数=周长的倍数,

60、求圆环的面积一般是用外圆的面积减去内圆的面积,还可以利用乘法分配律进行简便计算。S圆环=r2=(R2-r2)


五年级上册数学知识点 60句菁华扩展阅读


五年级上册数学知识点 60句菁华(扩展1)

——六年级上册数学知识点 60句菁华

1、整数加法计算法则:

2、?梯形上、下底中点的连线小于两腰和的一半。

3、同一底上的两底角和为90°的梯形,上下底中点的连线等于上下底中点的一半。

4、0没有倒数和负倒数,一个非0的数除以0在实数范围内无意义。

5、已知单位“1”用乘法计算

6、1的倒数是1,0没有倒数。

7、分数除法的意义

8、分数除法的计算方法

9、分数四则混合运算的运算顺序

10、求一个数比另一个数多(或少)几分之几的解题方法是:

11、求*均数问题: 总量÷总份数=每份数

12、工程问题

13、在*面图上标出物*置的方法:

14、圆的位置是由(__)确定的,圆的大小决定于(__)的长短。

15、圆是轴对称图形,它有无数条对称轴。(__)

16、圆是由一条曲线围成的*面图形。而长方形、梯形等都是由几条线段围成的*面图形把圆对折,再对折(对折2次)就能找到圆心。因此,圆是轴对称图形,直径所在的直线是圆的对称轴,圆有无数条对称轴。半圆只有1条对称轴。常见的轴对称图形:等腰三角形(1条)、等边三角形(3条)、等腰梯形(1条)、长方形(2条)、正方形(4条)、圆(无数条)、半圆(1条)。

17、14×8=25.12 3.14×9=28.26 3.14×16=50.24 3.14×25=78.50

18、车轮滚动一周前进的路程就是车轮的周长。

19、加法交换律:a+b=b+a

20、加法结合律:a+b+c=a+(b+c)

21、求一个数是另一个数的几分之几(或百分之几)?

22、比和除法、分数的联系:略

23、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

24、加数+加数=和和-一个加数=另一个加数

25、分数化成百分数:

26、百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。

27、应纳税额的计算:应纳税额=各种收入×税率

28、储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。

29、本金:存入银行的钱叫做本金。

30、利息:取款时银行多支付的钱叫做利息。本息:本金与利息的总和叫做本息。

31、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。

32、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。

33、比和除法、分数的区别:

34、画线段图:

35、当符合什么条件时,错误才能变成正确?

36、比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变

37、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

38、一个数,如果除了1和它本身还有别的因数,这样的数叫做合数,例如 4、6、8、9、12都是合数。

39、小数的意义 :把整数1*均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。

40、被除数÷除数= 被除数/除数

41、加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。

42、减法的性质:

43、带分数加减法的计算方法: 整数部分和分数部分分别相加减,再把所得的数合并起来。

44、、正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a

45、、长方体

46、三角形

47、直径=半径×2 d=2r 半径=直径÷2 r= d÷2

48、分数加减法应用题:分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。

49、分数乘法应用题:是指已知一个数,求它的几分之几是多少的应用题。

50、根据分数与除法的关系,两个数的比也可以写成分数形式。

51、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。

52、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图。

53、能用数对表示物体的位置,正确区分列和行的顺序;

54、使学生理解分数乘整数的意义,掌握分数乘整数的计算方法;

55、比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。

56、比和比例的意义:

57、圆:*面上到定点的距离等于定长的所有点组成的图形叫做圆。

58、半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。

59、百分数与分数的区别:

60、圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧,半圆既不是优弧,也不是劣弧。连接圆上任意两点的线段叫做弦。圆中最长的弦为直径。


五年级上册数学知识点 60句菁华(扩展2)

——五年级上册数学知识点 50句菁华

1、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。

2、(P23)在实际应用中,小数除法所得的商也可以根据需要用"四舍五入"法保留一定的小数位数求出商的近似数。

3、正确辨认从上面、前面、左面观察到物体的形状。

4、观察物体有诀窍,先数看到几个面,再看它的排列法,画图形时要注意,只分上下画数量。

5、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。②除数不变,被除数扩大,商随着扩大。被除数不变,除数缩小,商扩大。③被除数不变,除数缩小,商扩大。

6、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。

7、理解用字母表示数的意义和作用;

8、小数乘整数中有一个因数是小数,所以积一般来说也是小数。

9、有限小数:小数部分的位数是有限的小数,叫做有限小数。

10、无限小数:小数部分的位数是无限的小数,叫做无限小数。

11、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。

12、读作:x的*方,表示:两个x相乘。

13、梯形面积=(上底+下底)×高÷2字母公式:s=(a+b)×h÷2

14、等底等高的*行四边形面积相等。等底等高的三角形面积相等。

15、邮政编码:由6位组成,前2位表示省(直辖市、自治区),前3位表示邮区,前4位表示县(市),最后2位表示投递局(所)。

16、重叠法;

17、底和高是互相垂直的两条垂线段。(画高时,用虚线画高)

18、三角形面积=底×高÷2(s三=ah÷2)

19、长方形面积=长×宽 S = a b

20、正方形面积=边长×边长 S = a 2

21、5×1.8就是求1.5的1.8倍是多少。

22、圆柱的表面积=上下底面面积+侧面积:

23、循环小数的表示方法:一种是用省略号表示,要写出两个完整的循环节,后面标上省略号。如:0。3636…… 1。587587……另一种是简写的方法:即只写出一组循环节,然后在循环节的第一个数字和最后一个数上面点上圆点。如:12。

24、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。

25、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2

26、公式:长方形:周长=(长+宽)2【长=周长2-宽;宽=周长2-长】 字母公式:C=(a+b)2 面积=长宽 字母公式:S=ab 正方形:周长=边长4 字母公式:C=4a 面积=边长边长 字母公式:S=a *行四边形的面积=底高 字母公式: S=ah 三角形的面积=底高2 【底=面积2高=面积2底】 字母公式: S=ah2 梯形的面积=(上底+下底)高2 字母公式: S=(a+b)h2 【上底=面积2高-下底,下底=面积2高-上底;高=面积2(上底+下底)】

27、(P45)在含有字母的式子里,字母中间的乘号可以记作"·",也可 以省略不写。

28、个数量关系式:加法:和=加数+加数 一个加数=和-另一个加数

29、方程的检验过程:方程左边=……

30、3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9

31、正方形的特点:有4个直角,4条边相等。

32、*行四边形的特点:

33、封闭图形一周的长度,就是它的周长。

34、可以表示起点

35、分母:表示*均分的份数。分子:表示取出的份数。

36、把一个合数用质因数相乘的形式表示出来,叫做分解质因数。 如12=223

37、几个数公有的因数叫做这几个数的公因数。其中最大的一个,叫做它们的最大公因数。

38、约分:把一个分数的分子和分母同时除以公因数,分数值不变,这个过 程叫做约分。计算结果通常用最简分数表示。

39、a×b=c(a、b、c是不为0的整数),c是a和b的倍数,a和b是c的因数。

40、求方程中未知数的过程,叫做解方程。

41、从0、2、3、7、8中选出四个不同的数字,组成一个有因数2、3、5的四位数,其中最大的是( 8730 ),最小的是( 2370 )。 解:有0,3,7,8和0,2,3,7两种可能

42、一个长方体玻璃容器,容器内装有6升水,这时水面高度是15厘米。把一个苹果放入水中,这时容器内水面的高度是16.5厘米。请你求出这个苹果的体积。

43、2 的分数单位是( ),它有( 37 )个这样的分数单位,再加上( 23 )个这样的分数单位等于最小的合数。

44、<<1,□里可以填的自然数有( )。[写出所有可能]

45、某工厂有煤5吨,如果每天烧 吨,这些煤可烧( 5÷ =5÷0.2=25 )天;如果每天烧这些煤的 ,这些煤可烧( 5 )天。

46、小数四则运算顺序和运算定律跟整数是一样的。

47、图形左右*移行数不变;图形上下*移列数不变。

48、小数除以整数的计算方法:小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。

49、有些事件的发生是确定的,有些是不确定的。 可能

50、同一个圆内的所有线段中,圆的直径是最长的。


五年级上册数学知识点 60句菁华(扩展3)

——七年级上册数学知识点 30句菁华

1、1 正数与负数

2、相反数:只有符号不同的两个数叫做互为相反数。(例:2的相反数是-2;0的相反数是0)

3、3 有理数的加减法

4、5 有理数的乘方

5、有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

6、大于0的数叫做正数(positive number)。

7、在直线上任取一个点表示数0,这个点叫做原点(origin)。

8、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。

9、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

10、有理数除法法则

11、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximate number)。

12、单项式中的数字因数叫做这个单项式的系数(coefficient)。

13、多项式里次数项的次数,叫做这个多项式的次数(degree of a polynomial)。

14、如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

15、列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出还有未知数的等式——方程(equation)。

16、含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程(linear equation withone unknown)。

17、分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。

18、把等式一边的某项变号后移到另一边,叫做移项。

19、我们把实物中抽象的各种图形统称为几何图形(geometric figure)。

20、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一*面内,它们是*面图形(planefigure)。

21、面与面相交的地方形成线(line),线和线相交的地方是点(point)。

22、如果两个角的和等于180°(*角),就说这两个角互为补角(supplementary

23、线段、射线、直线的表示方法

24、只有符号不同的两个数叫做互为相反数。(0的相反数是0)

25、数轴上一点a到原点的距离表示a的绝对值。

26、科学记数法将一个数字表示成a×10的n次幂的形式,其中a是整数数位只有一位的数,n是正整数,这种中,a叫底数,叫做指数。当看记数方法叫科学记数法。

27、合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。

28、方程是含有未知数的等式。

29、列方程是解决问题的重要方法,利用方程可以解出未知数。

30、括号前面是"-"号,把括号和它前面的"-"号去掉,括号里各项的符号都要改变成相反的符号。


五年级上册数学知识点 60句菁华(扩展4)

——中考数学知识点 60句菁华

1、一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2.

2、一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7.

3、直角坐标系中,点A(-2,3)在第四象限。

4、当x=3时,函数=的值为1.

5、函数=-8x是一次函数。

6、抛物线=-3(x-2)2-5的开口向下。

7、半圆或直径所对的圆周角是直角。

8、长度相等的两条弧是等弧。

9、垂直于半径的直线是圆的切线。

10、运算法则(加、减、乘、除、乘方、开方)

11、已知:a-b=-2且ab<0,(a≠0,b≠0),判断a、b的符号。

12、代数式与有理式

13、同类二次根式、最简二次根式、分母有理化

14、根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:A. ;B. ;C. .

15、个体:总体中每一个考察对象。

16、垂线及基本性质(利用它证明"直角三角形中斜边大于直角边")

17、对顶角及性质

18、三角形的主要线段

19、三角形的面积

20、重要辅助线

21、特殊四边形

22、重要辅助线:①常连结四边形的对角线;②梯形中常"*移一腰"、"*移对角线"、"作高"、"连结顶点和对腰中点并延长与底边相交"转化为三角形。

23、方程、方程的解(根)、方程组的解、解方程(组)

24、解法:⑴直接开*方法(注意特征)

25、根的判别式:

26、根与系数顶的关系:

27、无理方程

28、增长率问题:

29、不等式的性质:⑴a>b←→a+c>b+c

30、一元一次不等式的解、解一元一次不等式

31、坐标*面内点与有序实数对的对应关系

32、一次函数

33、反比例函数

34、定义:在Rt△ABC中,∠C=Rt∠,则sinA= ;cosA= ;tgA= ;ctgA= .

35、"等对等"定理及其推论

36、与圆有关的角:⑴圆心角定义(等对等定理)

37、相切(交)两圆连心线的性质定理

38、圆的外切四边形、内接四边形的性质

39、弓形面积的计算方法

40、*分已知弧

41、性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(—b/k,0)正比例函数的图像总是过原点。

42、求任意线段的长:√(x1—x2)^2+(y1—y2)^2(注:根号下(x1—x2)与(y1—y2)的*方和)

43、抛物线有一个顶点P,坐标为P(—b/2a,(4ac—b^2)/4a)

44、二次项系数a决定抛物线的开口方向和大小。

45、抛物线y=ax^2+bx+c的图象与坐标轴的交点:

46、二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现。

47、过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。

48、小数乘整数(P2、3):意义--求几个相同加数的和的简便运算。

49、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商 0,点上小数点。如果有余数,要添 0 再除。

50、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

51、公式:

52、三角形、梯形的第二种推导方法老师已讲,自己看书

53、长方形框架拉成*行四边形,周长不变,面积变小。

54、邮政编码:由 6 位组成,前 2 位表示省(直辖市、自治区)

55、3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9

56、在*面直角坐标系中,重心的坐标是顶点坐标的算术*均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:(Z1+Z2+Z3)/3

57、重心是三角形内到三边距离之积最大的点。

58、函数y=-8x是一次函数。

59、抛物线y=-3(x-2)2-5的开口向下。

60、cos30= 。


五年级上册数学知识点 60句菁华(扩展5)

——八年级上册物理知识点 60句菁华

1、速度

2、声音在介质中的传播速度简称声速。一般情况下,v固>v液>v气声音在15℃空气中的传播速度是340m/s合1224km/h,在真空中的传播速度为0m/s。环境保护的角度噪声是指妨碍人们正常休息、学习和工作的声音,以及对人们要听的声音起干扰作用的声音。

3、人们用分贝(dB)来划分声音等级;听觉下限0dB;为保护听力应控制噪声不超过90dB;为保证工作学习,应控制噪声不超过70dB;为保证休息和睡眠应控制噪声不超过50dB。

4、长度测量结果的记录包括准确值、估计值和单位。

5、科学探究的主要过程是:提出问题、猜想与假设、指定计划与设计实验、进行实验与收集数据、分析与论证、评估、交流与合作。

6、频率的高低决定音调的高低;振幅的大小决定声音的响度。频率的单位是赫兹,符号是Hz,人能感受到的声音频率范围是20Hz~20000Hz。人们把低于20Hz的声音叫次声,高于20000Hz的声音叫超声。超声的应用有:超声波粉碎结石、声纳探测潜艇、鱼群,B超检查内脏器官。

7、回声:声音在传播途径中遇到碍物被返射回去的现象,叫回声。如回声比原声到达人耳晚0。1s以上,人耳能把他们区分开,否则回声会与原声混在一起会加强原声。利用“双耳效应”可以听到立体声。

8、自身能够发光的物体叫光源,如太阳、萤火虫等,而月亮不是光源。

9、声音的传播需要介质;固体、液体和气体都可以传播声音;声音在固体中传播时损耗最少(在固体中传的最远,铁轨传声),一般情况下,声音在固体中传得最快,气体中最慢(软木除外)。

10、声速:物体在每秒内传播的距离叫声速,单位是m/s;声速的计算公式是v=s/t;声音在空气中的速度为340m/s。

11、回声的利用:测量距离(车到山,海深,冰川到船的距离)。

12、人耳的构成:人耳主要由外耳道、鼓膜、听小骨、耳蜗及听觉神经组成。

13、在声音传给大脑的过程中任何部位发生障碍,人都会失去听觉(鼓膜、听小骨处出现障碍是传导性耳聋;听觉神经处出障碍是神经性耳聋)。

14、常见招生来源:飞机的轰鸣声、汽车的鸣笛声、鞭炮声、金属之间的摩擦声。

15、骨传导:声音的传导不仅仅可以用耳朵,还可以经头骨、颌骨传到听觉神经,引起听觉。这种声音的传导方式叫做骨传导。一些失去听力的人可以用这种方法听到声音。

16、人们用分贝(dB)来划分声音等级;听觉下限0dB;为保护听力应控制噪声不超过90dB;为保证工作学习,应控制噪声不超过70dB;为保证休息和睡眠应控制噪声不超过50dB。

17、应用及现象:

18、光速:

19、典型光路

20、定义:物体所含物质的多少叫质量。

21、测量:

22、理象记忆法:如当车起步和刹车时,人向后、前倾倒的现象,来记忆惯性概念。

23、凹透镜的作用:对光线发散。

24、*行光经凸透镜折射后会聚焦点,反过来从焦点发过焦点的光折射后*行*行光经凹透镜折射后折射光的反向延长线过虚焦点,则入射光的延长线过虚焦点的,折射后一定是*行主光轴的光线。

25、幻灯机的原理:f2f倒立放大实像。物体到凸透镜的距离在焦距和2倍焦距之间时,成放大倒立的实像。

26、把最小的电荷叫元电荷(一个电子所带电荷)用e表示;

27、e=1.60×10—19C;

28、测量原理:*均速度计算公式v=ts。

29、回声:

30、百米赛跑:

31、耳聋

32、音色:

33、声音传递能量的实例:

34、噪声的控制:

35、汽化的两种方式:

36、升华:

37、光源分类:

38、光的直线传播:

39、光的直线传播实例:

40、判断月食:

41、反射定律:

42、探究*面镜成像

43、光的折射:

44、傍晚太阳发红的原因:

45、紫外线的危害:

46、焦点:

47、质量的单位:千克(kg),常用单位:吨(t)、克(g)、毫克(mg)。1t=1000kg 1kg=1000g 1g=1000mg

48、天*是实验室测质量的常用工具。当天**衡后,被测物体的质量等于砝码的质量加上游码所对的刻度值。

49、托盘天*的结构:底座、游码、标尺、*衡螺母、横梁、托盘、分度盘、指针。

50、密度与温度:温度能改变物质的密度,一般物体都是在温度升高时体积膨胀(即:热胀冷缩,水在4℃以下是热缩冷胀),密度变小。

51、“振动停止,发生也停止”不同于“振动停止,发生也消失”。振动停止,只是不再发声,但是原来所发出的声音还会存在并继续向外传播。

52、在反射现象中,光路可逆。反射分为镜面反射和漫反射。镜面反射:表面光滑,*行光线入射,反射光线还是*行的。漫反射:表面粗糙,*行光线入射,反射光线向四面八方。

53、光的三原色:红、绿、蓝颜料三原色:青、黄、品红透明物体的颜色有通过它的色光决定,不透明物体的颜色由它反射的色光决定。

54、中间厚边缘薄的透镜叫凸透镜,边缘厚中间薄的透镜叫凹透镜。通过光心的光线不改变传播方向。

55、凸透镜有两个实焦点,焦点到光心距离叫做焦距。凹透镜有两个虚焦点。

56、照相机的镜头是个凸透镜,调焦环的作用是调节镜头到胶片的距离,拍近景时,镜头往前伸,

57、物质从液态变成气态叫做汽化,从气态变成液态叫做液化。汽化吸热,液化放热。汽化分为蒸发和沸腾。蒸发现象:在任何温度下,发生在液体表面,缓慢的汽化现象。影响蒸发的因素:

58、电流表示电流强弱的物理量,用I表示。单A) 1A=1000 m A 1m A=1000uA

59、折射角:折射光线和法线间的夹角。

60、当光射到两介质的分界面时,反射、折射同时发生


五年级上册数学知识点 60句菁华(扩展6)

——数学七年级知识点 60句菁华

1、多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或 降幂排列).

2、三角形的分类

3、方程的思想。数学是研究事物的空间形式和数量关系的,初中数学最重要的就是等量关系,其次是不等量关系。最常见的等量关系就是方程。

4、数形结合的思想。任何一道题,只要与形沾边,就应该根据题意中的草图分析一番。这样做,不但直观,而且全面,整体性强。

5、射线的定义:直线上一点和它们的一旁的部分叫做射线。

6、线段的定义:直线上两点和它之间的部分叫做线段,这两点叫做线段的端点。

7、面与面相交的地方形成线,线和线相交的地方是点。

8、倒数

9、连接两点间的线段的长度,叫做这两点的距离。

10、负数:小于0的数。

11、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。

12、垂直公理:过一点有且只有一条直线与已知直线垂直。

13、同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。

14、*面上不相重合的两条直线之间的位置关系为_______或________

15、实数的分类正有理数有理数零有限小数和无限循环小数

16、*方根

17、注重预习培养自学能力

18、次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。

19、多项式:几个单项式的和叫做多项式。

20、必须熟悉各种基本题型并掌握其解法。

21、*移:在*面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做*移*移变换,简称*移。

22、整数和分数统称为有理数(rationalnumber).

23、人们通常用一条直线上的点表示数,这条直线叫做数轴(numberaxis).

24、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue).

25、两个负数,绝对值大的反而小.

26、有理数的加法中,两个数相加,交换交换加数的位置,和不变.

27、有理数乘法法则

28、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.

29、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.

30、从一个数的左边的第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字

31、不可能事件:事先就能肯定一定不会发生的事件。也就是指该事件每次都完全没有机会发生,即发生的可能性为零。

32、用加、减、乘(乘方)、除等运算符号把数或表示数的字母连接而成的式子,叫做代数式。(注:单独一个数字或字母也是代数式)

33、概率:是反映事件发生的可能性的大小的量,它是一个比例数,一般用P来表示,P(A)=事件A可能出现的结果数/所有可能出现的结果数。

34、事件A发生的概率等于此事件A发生的可能结果所组成的面积(用SA表示)除以所有可能结果组成图形的面积(用S全表示),所以几何概率公式可表示为P(A)=SA/S全,这是因为事件发生在每个单位面积上的概率是相同的。

35、判断三条线段能否组成三角形。

36、三角形中三角的关系

37、三角形的三条重要线段

38、从三角形的一个顶点向它的对边所在的直线做垂线,顶点和垂足之间的线段叫做三角形的高线,简称为三角形的高。

39、全等图形的大小(面积、周长)、形状都相同。

40、能够完全重合的两个图形是全等图形。

41、三个角对应相等的两个三角形不一定全等。

42、如下图,在Rt△ABC中,∠C为直角,则∠A的锐角三角函数为(∠A可换成∠B):

43、两个等边三角形不一定全等。

44、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。

45、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.

46、乘方的定义:

47、两角和它们的夹边对应相等的两个三角形全等,简写为“角边角”或“ASA”。

48、科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.

49、利用图象:首先根据若干个对应组值,作出相应的图象,再在图象上找到对应的点对应的因变量y的值;

50、学数学要善于思考,自己想出来的答案远比别人讲出来的答案印象深刻。

51、数学公式一定要记熟,并且还要会推导,能举一反三。

52、数学要想学好,不琢磨是行不通的,遇到难题不能躲,研究明白了才能罢休。

53、关于尺规作图:尺规作图是指只用圆规和没有刻度的直尺来作图。

54、常量与变量:在某一变化过程中,可以取不同数值的量叫做变量;在某一变化过程中保持数值不变的量叫做常量、

55、已知一个数的绝对值,求这个数一个数a的绝对值就是数轴上表示数a的点到原点的距离,一般地,绝对值为同一个正数的有理数有两个,它们互为相反数,绝对值为0的数是0,没有绝对值为负数的数。

56、有理数的加法法则

57、关于三角形的中线、高和中线

58、互为倒数:乘积为1的两个数互为倒数;

59、有理数乘法法则:

60、判断:1)最小的自然数是1;2)最小的整数是1;3)一个有理数的倒数等于它本身,则这个数是1;


五年级上册数学知识点 60句菁华(扩展7)

——二年级下册数学知识点 40句菁华

1、笔算除法的计算方法:

2、应用题中,除数和余数的单位不一样;

3、“小猫在小狗的()方,()在小狗的东面”,是以小狗家为中心点,画出方位坐标,确定方向;

4、太阳早上从东边升起,西边落下;

5、计算时要注意:

6、加法的验算方法:

7、减法的验算方法:

8、比较角的大小时要注意:角的大小与边的长短无关,与角的张口大小有关,张口越大角就越大;

9、秒针走一小格是1秒,走一大格是5秒,走一圈是60秒,就是1分钟;

10、读数和写数都从高位起。万以内数的读法:读数时,要从高位读起,万位上是几就读几万,千位上是几就读几千,百位上是几就读几百,十位上是几就读几十,个位上是几就读几,中间有一个“0”或者连续两个“0”就只读一个“零”,末尾不管有几个 0都不读。

11、整百、整千的加减法。

12、用画正字的方法收集数据。

13、数据收集---整理---分析表格。

14、*均分的含义:把一些物品分成几份,每份分得同样多,叫*均分。

15、求商的方法:

16、用乘法口诀求商时,想除数和几相乘的被除数。

17、用乘法和除法两步计算解决实际问题的方法:

18、*移:当物体水*方向或竖直方向运动,并且物体的方向不发生改变,这种运动是*移。只有形状、大小、方向完全相同的图形通过*移才能互相重合。

19、不完全商

20、几何中的锐角:大于0°小于90°(直角)的角。

21、*移:*移是指在*面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫做图形的*移运动,简称*移。*移不改变图形的形状和大小。*移可以不是水*的。

22、旋转的.性质

23、克

24、用几个数字组数:可以把数字依据从大到小或从小到大的顺序依次组合排列。要组成最大的数,就把数字按照由大到小排列;要组成最小的数,就把数字按照由小到大排列。如果有0,0不能排在最高位。

25、长度单位的进率:米、分米、厘米、毫米相邻两个单位之间的进率是10。

26、大角对大边。

27、正弦定理:

28、余弦定理:

29、认识整时方法:分针指着12,时针指着几就是几时。

30、认真做好教学工作,也是提高成绩的主要方法:认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习,快乐生活。

31、引导学生积极归纳解题规律,引导学生一题多解,多解归一,以题类题,触类旁通。培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。

32、可以表示分界

33、可以表示起点

34、鸽巢原理也叫抽屉原理。

35、数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想像力和创造力等方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。

36、长方形的周长=(长+宽)×2:C=(a+b)×2。

37、正方形的周长=边长×4:C=4a。

38、三角形的面积=底×高÷2:S=ah÷2。

39、正方体的表面积=棱长×棱长×6:S=6a×a。

40、205. 207. ( ). ( ). ( )


五年级上册数学知识点 60句菁华(扩展8)

——高二数学知识点归纳 40句菁华

1、有穷数列与无穷数列:

2、三个数成等差的设法:a-d,a,a+d;四个数成等差的`设法:a-3d,a-d,,a+d,a+3d

3、三个数成等比的设法:a/q,a,aq;

4、为等差数列,则 (c>0)是等比数列。

5、分组法求数列的和:如an=2n+3n

6、错位相减法求和:如an=(2n-1)2n

7、裂项法求和:如an=1/n(n+1)

8、求数列的最大、最小项的方法:

9、空间两条直线的位置关系:*行、相交、异面的概念;

10、交集;

11、函数;

12、对数;

13、等差数列及其通项公式;

14、弧度制;

15、同角三角函数的基本关系式;

16、两角和与差的正弦、余弦、正切;

17、周期函数;

18、函数的图象;

19、向量;

20、向量的加法与减法;

21、线段的定比分点;

22、不等式;

23、不等式的基本性质;

24、含绝对值的不等式。

25、两条直线的交角;

26、曲线与方程的概念;

27、圆的参数方程。

28、直线的倾斜角的范围是在*面直角坐标系中,对于一条与轴相交的直线,如果把轴绕着交点按逆时针方向转到和直线重合时所转的最小正角记为,就叫做直线的倾斜角。当直线与轴重合或*行时,规定倾斜角为0;

29、斜率:已知直线的倾斜角为α,且α≠90°,则斜率k=tanα.过两点(x1,y1),(x2,y2)的直线的斜率k=(y2-y1)/(x2-x1),另外切线的斜率用求导的方法。

30、圆的标准方程:圆的一般方程:注意能将标准方程化为一般方程

31、双曲线:①方程(a,b>0)注意还有一个;②定义:||PF1|-|PF2||=2a<2c;③e=;④实轴长为2a,虚轴长为2b,焦距为2c;渐进线或c2=a2+b2

32、学会三视图的分析:

33、导数的定义:在点处的导数记作.

34、导数的几何物理意义:曲线在点处切线的斜率

35、四种命题:

36、逻辑联结词:

37、面积、体积最(大)问题

38、不等式对应方程的根:如果一元二次不等式对应的方程的根能够通过因式分解的方法求出来,则根据这两个根的大小进行分类讨论,这时,两个根的大小关系就是分类标准,如果一元二次不等式对应的方程根不能通过因式分解的方法求出来,则根据方程的判别式进行分类讨论。通过不等式练习题能够帮助你更加熟练的运用不等式的知识点,例如用放缩法证明不等式这种技巧以及利用均值不等式求最值的九种技巧这样的解题思路需要再做题的过程中总结出来。

39、*面及基本性质;2.*面图形直观图的画法;3.*面直线;4.直线和*面*行的判定与性质;5.直线和*面垂直的判定与性质;6.三垂线定理及其逆定理;7.两个*面的位置关系;8.空间向量及其加法、减法与数乘;9.空间向量的坐标表示;10.空间向量的数量积;11.直线的方向向量;12.异面直线所成的角;13.异面直线的公垂线;14.异面直线的距离;15.直线和*面垂直的性质;16.*面的法向量;17.点到*面的距离;18.直线和*面所成的角;19.向量在*面内的射影;20.*面与*面*行的性质;21.*行*面间的距离;22.二面角及其*面角;23.两个*面垂直的判定和性质;24.多面体;25.棱柱;26.棱锥;27.正多面体;28.球。

40、余弦定理:在???C中,有a?b?c?2bccos?,b?a?c?2accos?,222222c2?a2?b2?2abcosC.

相关内容
相关词条
热门标签
全站热门
当前热门
标签索引

精美图文推荐

上一篇 下一篇
返回首页


文案 | 句子 | 文案 | 成语 | 文案| 句子| 教学反思 | 教学设计 | 合同范本 | 工作报告 | 活动策划鄂ICP备2022017863号-1