位置 > 首页 > 句子 >

高二数学知识点归纳 40句菁华

日期:2022-12-03 00:00:00

1、有穷数列与无穷数列:

2、三个数成等差的设法:a-d,a,a+d;四个数成等差的`设法:a-3d,a-d,,a+d,a+3d

3、三个数成等比的设法:a/q,a,aq;

4、为等差数列,则 (c>0)是等比数列。

5、分组法求数列的和:如an=2n+3n

6、错位相减法求和:如an=(2n-1)2n

7、裂项法求和:如an=1/n(n+1)

8、求数列的最大、最小项的方法:

9、空间两条直线的位置关系:*行、相交、异面的概念;

10、交集;

11、函数;

12、对数;

13、等差数列及其通项公式;

14、弧度制;

15、同角三角函数的基本关系式;

16、两角和与差的正弦、余弦、正切;

17、周期函数;

18、函数的图象;

19、向量;

20、向量的加法与减法;

21、线段的定比分点;

22、不等式;

23、不等式的基本性质;

24、含绝对值的不等式。

25、两条直线的交角;

26、曲线与方程的概念;

27、圆的参数方程。

28、直线的倾斜角的范围是在*面直角坐标系中,对于一条与轴相交的直线,如果把轴绕着交点按逆时针方向转到和直线重合时所转的最小正角记为,就叫做直线的倾斜角。当直线与轴重合或*行时,规定倾斜角为0;

29、斜率:已知直线的倾斜角为α,且α≠90°,则斜率k=tanα.过两点(x1,y1),(x2,y2)的直线的斜率k=(y2-y1)/(x2-x1),另外切线的斜率用求导的方法。

30、圆的标准方程:圆的一般方程:注意能将标准方程化为一般方程

31、双曲线:①方程(a,b>0)注意还有一个;②定义:||PF1|-|PF2||=2a<2c;③e=;④实轴长为2a,虚轴长为2b,焦距为2c;渐进线或c2=a2+b2

32、学会三视图的分析:

33、导数的定义:在点处的导数记作.

34、导数的几何物理意义:曲线在点处切线的斜率

35、四种命题:

36、逻辑联结词:

37、面积、体积最(大)问题

38、不等式对应方程的根:如果一元二次不等式对应的方程的根能够通过因式分解的方法求出来,则根据这两个根的大小进行分类讨论,这时,两个根的大小关系就是分类标准,如果一元二次不等式对应的方程根不能通过因式分解的方法求出来,则根据方程的判别式进行分类讨论。通过不等式练习题能够帮助你更加熟练的运用不等式的知识点,例如用放缩法证明不等式这种技巧以及利用均值不等式求最值的九种技巧这样的解题思路需要再做题的过程中总结出来。

39、*面及基本性质;2.*面图形直观图的画法;3.*面直线;4.直线和*面*行的判定与性质;5.直线和*面垂直的判定与性质;6.三垂线定理及其逆定理;7.两个*面的位置关系;8.空间向量及其加法、减法与数乘;9.空间向量的坐标表示;10.空间向量的数量积;11.直线的方向向量;12.异面直线所成的角;13.异面直线的公垂线;14.异面直线的距离;15.直线和*面垂直的性质;16.*面的法向量;17.点到*面的距离;18.直线和*面所成的角;19.向量在*面内的射影;20.*面与*面*行的性质;21.*行*面间的距离;22.二面角及其*面角;23.两个*面垂直的判定和性质;24.多面体;25.棱柱;26.棱锥;27.正多面体;28.球。

40、余弦定理:在???C中,有a?b?c?2bccos?,b?a?c?2accos?,222222c2?a2?b2?2abcosC.


高二数学知识点归纳 40句菁华扩展阅读


高二数学知识点归纳 40句菁华(扩展1)

——数学知识点 100句菁华

1、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。

2、相邻两个质量单位进率是1000。

3、①0和任何数相乘都得0;②1和任何不是0的数相乘还得原来的数。

4、三位数乘一位数:积有可能是三位数,也有可能是四位数。

5、(关于“大约)应用题:

6、正方形的特点:有4个直角,4条边相等。

7、有理数减法法则:减去一个数,等于加上这个数的相反数;即a—b=a+(—b)。

8、有理数乘方的法则:

9、圆内接四边形的性质定理:圆内接四边形的对角互补。(任意一个外角等于它的内对角)

10、大于0的数叫做正数。

11、在正数前面加上负号“-”的数叫做负数。

12、整数和分数统称为有理数。

13、有理数的加法中,两个数相加,交换交换加数的位置,和不变。

14、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)

15、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。

16、统计:2、推理证明:一般不考,若考会是填空题3、复数:(新课标比老课本难的多,高考必考内容)。

17、加数+加数=和

18、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序运算;

19、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;

20、中间有一个0或两个0只读一个“零”;

21、哪一位上乘得的积满几十就向前进几。

22、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;

23、先读万级,再读个级;

24、万级的数要按个级的读法来读,再在后面加上一个“万”字;

25、弄清题意,找出未知数,并用X表示;

26、什么是面积?

27、加法各部分的关系:

28、角

29、(1)什么是互相垂直?什么是垂线?什么是垂足?

30、四边形

31、乘法

32、什么是混循环小数?

33、什么是四则运算?

34、什么是解方程?

35、圆面积公式的推导

36、分数乘整数的计算方法:用分子乘整数的积作分子,分母不变。能约分的可以先约分,再计算。

37、求一个数的几分之几是多少?(用乘法)

38、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。

39、退位减:减法运算中必须向高位借位的减法运算。例:51-22=39

40、结合生活情境,通过自主探究活动,初步认识*行线、垂线;独立思考能力与合作精神得到和谐发展;

41、数级:数级是为便于人们记读*数的一种识读方法,在位值制(数位顺序)的基础上,以三位或四位分级的原则,把数读,写出来。

42、数级分类:

43、学生要明确已知的条件和问题,然后先独立思考,再在小组中交流自己的想法,鼓励学生用不同的方法来解决问题,从而发现(长+宽)﹡2是求长方形周长最简便的方法。不必用公式化的算式去约束学生,他们可以自己喜欢的方法去计算。

44、概念和分类

45、*行公理 经过直线外一点,有且只有一条直线与这条直线*行

46、内错角相等,两直线*行

47、推论 2 有一个角等于60°的等腰三角形是等边三角形

48、矩形性质定理2 矩形的对角线相等

49、矩形判定定理2 对角线相等的*行四边形是矩形

50、菱形面积=对角线乘积的一半,即S=(a×b)÷2

51、*行于三角形的一边,并且和其他两边相交的直线, 所截得的三角形的三边与原三角形三边对应成比例

52、判定定理3 三边对应成比例,两三角形相似(SSS)

53、性质定理3 相似三角形面积的比等于相似比的*方

54、一个加数=和+另一个加数

55、了解除法是乘法的逆运算,因此一道乘法算式能写两道除法算式

56、横式p34、39:

57、把剩下的整十数与个位上的数合起来再被除数去除。

58、p43除法的估算

59、除法的应用p44

60、*方差公式:*方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。

61、一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项、合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。

62、分式混合运算法则:分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简。

63、象限角的*分线:象限角的*分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反。

64、*行某轴的直线:*行某轴的直线,点的坐标有讲究,直线*行X轴,纵坐标相等横不同;直线*行于Y轴,点的横坐标仍照旧。

65、正多边形诀窍歌:份相等分割圆,n值必须大于三,依次连接各分点,内接正n边形在眼前.

66、二次函数抛物线,选定需要三个点,a的正负开口判,c的大小y轴看,△的符号最简便,x轴上数交点,a、b同号轴左边抛物线*移a不变,顶点牵着图象转,三种形式可变换,配方法作用最关键。

67、注意:如果被除数的位数不够,在被除数的末尾用 0 补足。

68、概念:两个运动的物体同时由两地出发相向而行,在途中相遇,这类应用题叫做相遇问题;

69、根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。

70、比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。

71、圆的定义:*面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.

72、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.

73、检验,写答语

74、纯小数:小数的整数部分为零的小数,叫做纯小数。

75、混循环小数:与纯循环小数有唯一的区别,不是从十分位开始循环的循环小数,叫混循环小数。

76、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。

77、关键:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,例如a是b的几分之几,就把数b看作单位“1”.在几个量中,弄清哪一个是单位“1”很重要,否则容易出错误.而百分数应用题中所涉及的百分数,只是分母是100的分数,因而计算的方法和分数应用题是一样的,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系。

78、分散的人或事物聚集到一起;使聚集:紧急~。

79、函数的单调区间理解不准致误

80、三角函数的.单调性判断致误

81、树立信心,养成良好的运算习惯。部分同学*时学习过程中自信心不足,做作业时免不了互相对答案,也不认真找出错误原因并加以改正。“会而不对”是高三数学学习的大忌,常见的有审题失误、计算错误等,*时都以为是粗心,其实这就是一种非常不好的习惯,必须在第一轮复习中逐步克服,否则,后患无穷。可结合*时解题中存在的具体问题,逐题找出原因,看其是行为习惯方面的原因,还是知识方面的缺陷,再有针对性加以解决。必要时作些记录,也就是错题本,每位同学必备的,以便以后查询。

82、直线、*面、简单几何体:空间直线、直线与*面、*面与*面、棱柱、棱锥、球、空间向量

83、概率与统计:概率、分布列、期望、方差、抽样、正态分布

84、算术*方根

85、1柱、锥、台、球的结构特征

86、1.3—2.1.4空间中直线与*面、*面与*面之间的位置关系

87、两个*面*行的判定定理:一个*面内的两条交直线与另一个*面*行,则这两个*面*行。

88、2.3—2.2.4直线与*面、*面与*面*行的性质

89、有理数和无理数统称实数.

90、被开方数一定是非负数.

91、一元二次方程根的情况

92、勾股定理的逆定理

93、*行四边形判定定理1

94、菱形判定定理2

95、等腰梯形判定定理

96、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d

97、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

98、切线长定理

99、相交弦定理

100、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4


高二数学知识点归纳 40句菁华(扩展2)

——数学知识点 50句菁华

1、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10)

2、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。

3、乘方的定义:

4、由绝对值的定义可知:

5、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值向乘。任何数同0相乘,都得0。

6、在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;

7、被减数—减数=差

8、除到被除数的哪一位就在哪一位上面写商;

9、万级的数要按个级的读法来读,再在后面加上一个“万”字;

10、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。

11、什么是面积?

12、乘法各部分之间的关系:

13、什么是自然数?

14、什么是单名数?

15、什么样的数能被3整除?

16、什么是质因数?

17、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。

18、分数乘分数的计算方法是:用分子相乘的积做分子,用分母相乘的积作分母。(分子乘分子,分母乘分母)

19、在理解的基础上,掌握整数乘法的口算方法;培养类推迁移的能力和口算的能力;

20、学生要明确已知条件和问题,利用学习长方形周长的知识经验,知识迁移到怎样求出正方形的周长,就是把正方形的四条边长加起来,还可以用边长乘4。

21、过两点有且只有一条直线

22、同角或等角的补角相等

23、推论 三角形两边的差小于第三边

24、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

25、*行四边形判定定理1 两组对角分别相等的四边形是*行四边形

26、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值

27、特征:①两个运动的物体一般同时不同地(或不同时不同地)出发作相向运动;

28、同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商;

29、出勤率

30、列方程解答应用题的步骤

31、设未知数,列比例式

32、对于函数f(x),如果对于定义域内任意一个x,都有f(-x)=-f(x),那么f(x)为奇函数;

33、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

34、养成良好的学习数学习惯。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。

35、函数零点定理使用不当致误

36、函数的最值在实际问题中的

37、必修课程由5个模块组成:

38、排列、组合和概率:排列、组合应用题、二项式定理及其应用

39、导数:导数的概念、求导、导数的应用

40、定理:一条直线与一个*面*行,则过这条直线的任一*面与此*面的交线与该直线*行。

41、定义

42、当被*方数小数点每向右移动三位,它的立方根小数点向右移动一位.

43、一个数与0相加,仍得这个数。

44、函数

45、定理1

46、(1)比例的基本性质:如果a:b=c:d,那么ad=bc

47、*行线分线段成比例定理

48、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线

49、圆的外切四边形的两组对边的和相等

50、列方程解应用题的常用公式:


高二数学知识点归纳 40句菁华(扩展3)

——初一数学知识点归纳 40句菁华

1、单项式:;单独的一个数或一个字母也是单项式

2、单项式的次数:;

3、列方程解应用题的一般步骤:

4、一些实际问题中的规律和等量关系:

5、*行四边形的性质,等腰梯形的性质与判定

6、用形状、大小完全相同的三角形可以密铺.因为三角形的内角和为180°,所以,用6个这样的三角形就可以组合起来镶嵌成一个*面.

7、定义:圆是到定点的距离等于定长的点的集合

8、点与圆的位置关系:

9、绝对值:

10、性质:

11、对称性:*行四边形是中心对称图形。

12、有理数(rationalnumber):正整数、负整数、0、正分数、负分数都可以写成分数的形式,这样的数称为有理数。

13、相反数(oppositenumber):绝对值相等,只有负号不同的两个数叫做互为相反数。

14、绝对值(absolutevalue)一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。记做|a|。由绝对值的定义可得:|a-b|表示数轴上a点到b点的距离。一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。

15、倒数

16、有理数的混合运算顺序

17、命题:判断一件事情的语句叫命题。

18、*行公理:经过直线外一点有且只有一条直线与已知直线*行。

19、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

20、三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。

21、多边形:在*面内,由一些线段首尾顺次相接组成的图形叫做多边形。

22、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

23、多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为*面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。

24、*面镶嵌:用一些不重叠摆放的多边形把*面的一部分完全覆盖,叫做用多边形覆盖*面。

25、多项式:几个单项式的和叫做多项式。多项式中每个单项式叫多项式的项,次数项的次数叫多项式的次数。

26、数轴:数轴是规定了原点、正方向、单位长度的一条直线.

27、相反数:

28、2.1三角形的内角

29、3.1多边形

30、3.2多边形的内角和

31、相反数

32、绝对值 |a|0.

33、乘法

34、科学记数法:

35、1 正数与负数

36、2 有理数

37、同号两数相加,取相同的符号,并把绝对值相加。

38、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

39、4 有理数的乘除法

40、等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。


高二数学知识点归纳 40句菁华(扩展4)

——五年级上册数学知识点 60句菁华

1、(P23)在实际应用中,小数除法所得的商也可以根据需要用"四舍五入"法保留一定的小数位数求出商的近似数。

2、从不同位置观察同一个物体,所看到的图形有可能一样,也有可能不一样。

3、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。

4、计算小数乘法末尾对齐,按整数乘法法则进行计算。

5、用计算器来验算

6、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:2.6÷1.3表示已知两个因数的积2.6与其中的一个因数1.3,求另一个因数的运算。

7、把下面的数量关系补充完整。

8、*行四边形面积=底×高(s*=ah)

9、三角形面积=底×高÷2(s三=ah÷2)

10、正方形周长=边长×4 C = 4 a

11、梯形下底=梯形面积×2÷高-上底 b = 2 S ÷ h - a

12、1*方千米=100公顷=1000000*方米

13、把一个物体或一个图形*均分成几份,取其中的几份,就是这个物体或图形的几分之几。

14、①分子相同,分母小的分数反而大,分母大的分数反而小。

15、小数乘整数(P2、3):意义--求几个相同加数的和的简便运算。

16、(P11)小数四则运算顺序跟整数是一样的。

17、运算定律和性质:

18、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数( 0除外),商不变。②除数不变,被除数扩大,商随着扩大。被除数不变,除数缩小,商扩大。 ③被除数不变,除数缩小,商扩大。

19、圆柱的体积=底面积×高:V=ShV=πrh=π(d÷2)h=π(C÷2÷π)h。

20、循环小数的表示方法:一种是用省略号表示,要写出两个完整的循环节,后面标上省略号。如:0。3636…… 1。587587……另一种是简写的方法:即只写出一组循环节,然后在循环节的第一个数字和最后一个数上面点上圆点。如:12。

21、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。

22、1厘米的长度里有(10)小格,每小格的长度(相等),都是(1)毫米。

23、长方形的面积=长×宽:S=ab。

24、梯形的面积=(上底+下底)×高÷2:S=(a+b)h÷2。

25、圆的周长=圆周率×直径=圆周率×半径×2:c=πd=2πr。

26、长方形的面积=长×宽S=ab

27、正方形的面积=边长×边长S=a.a= a

28、长方体的表面积=(长×宽+长×高+宽×高) ×2公式:S=(a×b+a×c+b×c)×2

29、长方体的体积=长×宽×高公式:V = abh

30、正方体的表面积=棱长×棱长×6公式:S=6a2

31、长方体(或正方体)的体积=底面积×高公式:V = abh

32、对*移和旋转现象的初步认识:

33、三角形面积公式推导:旋转 *行四边形可以转化成一个长方形; 两个完全一样的三角形可以拼成一个*行四边形, 长方形的长相当于*行四边形的底; *行四边形的底相当于三角形的底; 长方形的宽相当于*行四边形的高; *行四边形的高相当于三角形的高; 长方形的面积等于*行四边形的面积, *行四边形的面积等于三角形面积的2倍,因为长方形面积=长宽,所以*行四边形面积=底高。 因为*行四边形面积=底高,所以三角形面积=底高2

34、梯形面积公式推导:旋转

35、(P45)在含有字母的式子里,字母中间的乘号可以记作"·",也可 以省略不写。

36、所有的方程都是等式,但等式不一定都是方程。

37、方程的检验过程:方程左边=……

38、三角形、梯形的第二种推导方法老师已讲,自己看书

39、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一 般水*更合适。

40、5 4 0 0 1

41、3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9

42、封闭图形一周的长度,就是它的周长。

43、在做题时,我们要注意中间的0,因为是连续退位的,所以从百位退1到十位当10后,还要从十位退1当10,借给个位,那么十位只剩下9,而不是10。(两个三位数相加的和:可能是三位数,也有可能是四位数。)

44、公式被减数=减数+差和=加数+另一个加数

45、公式

46、分数:把单位1*均分成若干份,表示这样的一份或几份的数,叫做分数。

47、自然数按因数的个数来分:质数、合数、1.

48、方程一定是等式;等式不一定是方程。等式>方程

49、等式两边同时加上或减去同一个数,所得结果仍然是等式。这是等式的性质。

50、有两个数都是合数,又是互质数,它们的最小公倍数是90,这两个数是( 9和10 )。

51、几个数的( 最大公因 )数的所有( 因 )数,都是这几个数的公因数;几个数的( 最小公倍 )数的所有( 倍 )数,都是这几个数的公倍数。

52、用若干个完全一样的小正方体,拼成一个较大的正方体,至少需这样的小正方体( 8 )个,此时所拼成的较大正方体的表面积是原来每个小正方体表面积的( (2×2×6)÷(1×1×6)=4 )倍。

53、两个完全一样的正方体拼成一个长方体,长方体的表面积是40*方厘米,每个小正方体的表面积是多少*方厘米?

54、某工厂有煤5吨,如果每天烧 吨,这些煤可烧( 5÷ =5÷0.2=25 )天;如果每天烧这些煤的 ,这些煤可烧( 5 )天。

55、数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右分别为列数和行数,即“先列后行”。

56、车轮滚动一周前进的路程就是车轮的周长。

57、常用的3.14的倍数:

58、圆的面积公式:S圆=r2。圆的面积是半径*方的倍。

59、大小两个圆比较,半径的倍数=直径的倍数=周长的倍数,

60、求圆环的面积一般是用外圆的面积减去内圆的面积,还可以利用乘法分配律进行简便计算。S圆环=r2=(R2-r2)


高二数学知识点归纳 40句菁华(扩展5)

——高考化学知识点归纳 50句菁华

1、半径

2、密度

3、收集装置的选用应考虑:

4、鉴别氧气的方法是:用带火星的木条伸到瓶内,木条复燃,证明是氧气

5、依据金属活动性顺序表(极少数例外)。

6、依据元素周期表。同周期中,从左向右,随着核电荷数的增加,金属性逐渐减弱;同主族中,由上而下,随着核电荷数的增加,金属性逐渐增强。

7、依据原电池中的电极名称。做负极材料的金属性强于做正极材料的金属性。

8、依据电解池中阳离子的放电(得电子,氧化性)顺序。优先放电的阳离子,其元素的金属性弱。

9、碱金属元素原子半径越大,熔点越高,单质的活泼性越大

10、硫与*皆易溶于二硫化碳、四氯化碳等有机溶剂,有机酸则较难溶于水

11、能与冷水反应放出气体单质的只有是活泼的金属单质或活泼的非金属单质

12、由于Fe3+和S2—可以发生氧化还原反应,所以Fe2S3不存在?

13、羧酸:在分子里烃基跟羧基直接相连接的有机化合物叫做羧酸。一元羧酸的通式:R—COOH,饱和一元羧酸的通式:CnH2nO2。

14、羧酸的分类:按羧基的数目:一元羧酸、二元羧酸、多元羧酸;根据分子里的烃基是否饱和:饱和羧酸、不饱和羧酸;按烃基不同:脂肪酸、芳香酸;按C原子数目:低级脂肪酸、高级脂肪酸。

15、羧酸的同分异构现象:羧酸的同分异构现象较普遍,羧酸既存在同类的同分异构体,也存在羧酸与酯的同分异构体。

16、酯的物理性质:低级酯是有芳香气味的液体,存在于各种水果和花草中,酯的密度一般比水小,难溶于水,易溶于乙醇和乙醚等有机溶剂。

17、后点酒精灯(所有装置装完后再点酒精灯)原则。

18、掌握一图(原子结构示意图)、五式(分子式、结构式、结构简式、电子式、最简式)、六方程(化学方程式、电离方程式、水解方程式、离子方程式、电极方程式、热化学方程式)的正确书写。

19、质量数相同的原子,不一定属于同种元素的原子,如18O与18F、40K与40Ca。

20、单质分子不一定是非极性分子,如O3是极性分子。

21、金属氧化物一般为碱性氧化物,但一些高价金属的氧化物反而是酸性氧化物,如:Mn2O7、CrO3等反而属于酸性氧物,2KOH+Mn2O7==2KMnO4+H2O。

22、离子的电子层结构一定是稳定结构。

23、共价化合物中一定不含有离子键。

24、分子间力一定含在分子晶体内,其余晶体一定不存在分子间力(除石墨外)。

25、原子的最外电子层有1个电子的元素不一定是ⅠA族元素,如Cr、ⅠB族元素等。

26、ⅠA族元素不一定是碱金属元素,还有氢元素。

27、稀有气体原子的最外层一般都是8个电子,但He原子为2个电子。

28、优先放电原理电解电解质水溶液时,阳极放电顺序为:活泼金属阳极(Au、Pt除外)>S2->I->Br->Cl->OH->含氧酸根离子>F-。阴极:Ag+>Hg2+>Fe3+>Cu2+>H+>b2+>Sn2+>Fe2+>Zn2+>Al3+>Mg2+>Na+>Ca2+>K+。

29、优先氧化原理若某一溶液中同时含有多种还原性物质,则加入一种氧化剂时,优先氧化还原性强的物质。如还原性:S2->I->Fe2+>Br->Cl-,在同时含以上离子的溶液中通入Cl2按以上顺序依次被氧化。

30、优先挥发原理当蒸发沸点不同的物质的混合物时:低沸点的物质优先挥发(有时亦可形成共沸物)。将100克36%的盐酸蒸发掉10克水后关于盐酸浓度变小,因为HCl的沸点比水低,当水被蒸发时,HCl已蒸发掉了。石油的分馏,先挥发出来的是沸点最低的汽油,其次是煤油、柴油、润滑油等。

31、增大反应物A的浓度,那么A的转化率不一定降低。对于有多种反应物参加反应的可逆反应,增加A的量,A的转化率一定降低;但对于反应:2NO2(气)==N2O4(气)当它在固定容积的密闭容器中反应时,若增大NO2的浓度时,因体系内压强增大,从而时*衡向着气体体积减小的方向移动,及*衡向右移动。那么此时NO2的转化率不是减小,而是增大了。

32、NaAlO2、Na2SiO3、Na2CO3、Ca(ClO)2、NaOH、C17H35COONa、C6H5ONa等饱和溶液中通入CO2出现白色沉淀,继续通入CO2至过量,白色沉淀仍不消失

33、在含有较高浓度的Fe3+的溶液中,SCN-、I-、AlO2-、S2-、CO32-、HCO3-等不能大量共存?

34、由于Fe3+和S2-可以发生氧化还原反应,所以Fe2S3不存在?

35、在次氯酸钠溶液中通入少量二氧化硫可得亚硫酸钠与次氯酸?

36、含有价元素的化合物不一定具有强氧化性?

37、单质的还原性越弱,则其阳离子的氧化性越强?

38、依据金属活动性顺序表(极少数例外)。

39、羧酸的分类:按羧基的数目:一元羧酸、二元羧酸、多元羧酸;根据分子里的烃基是否饱和:饱和羧酸、不饱和羧酸;按烃基不同:脂肪酸、芳香酸;按C原子数目:低级脂肪酸、高级脂肪酸。

40、酯的结构特征:酯是羧酸分子羧基中的-OH被-OR取代后的产物。酯的特征结构是-COO-,羧酸酯的一般通式为RCOOR′由饱和一元醇和饱和一元酸酯化反应得到的酯,可以用通式CmH2m+1COOCnH2n+1(或CnH2nO2)表示。与饱和一元羧酸为同分异构体。

41、能水解的阳离子跟能水解的阴离子在水溶液中不能大量共存(双水解)。

42、溶液中能发生络合反应的离子不能大量共存。

43、物质的量(n)是表示含有一定数目粒子的集体的物理量。

44、摩尔(mol):把含有6.02×1023个粒子的任何粒子集体计量为1摩尔。

45、摩尔质量(M)(1)定义:单位物质的量的物质所具有的质量叫摩尔质量.(2)单位:g/mol或g..mol-1(3)数值:等于该粒子的相对原子质量或相对分子质量.

46、物质结构、元素周期表的认识

47、溶液浓度、离子浓度的比较及计算

48、盐类的水解

49、有机物的燃烧

50、有机物化学推断的解答(“乙烯辐射一大片,醇醛酸酯一条线”)


高二数学知识点归纳 40句菁华(扩展6)

——高考数学知识点总结 40句菁华

1、进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解。

2、简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?

3、用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。

4、“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?

5、在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示。

6、两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a

7、解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?

8、在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。

9、你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样的无穷等比数列的所有项的和必定存在?

10、三垂线定理及其逆定理你记住了吗?你知道三垂线定理的关键是什么吗?(一面、四线、三垂直、立柱即面的垂线是关键)一面四直线,立柱是关键,垂直三处见

11、求两条异面直线所成的角、直线与*面所成的角和二面角时,如果所求的角为90°,那么就不要忘了还有一种求角的方法即用证明它们垂直的方法。

12、两条异面直线所成的角的范围:0°<α≤90°< p="">

13、d=R+r两圆外切;两圆的圆心距离之和等于两圆的半径之和。

14、d=R—r两圆内切;两圆的圆心距离之和等于两圆的半径之差。

15、有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。

16、如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题)。这几种基本应用你掌握了吗?

17、三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?

18、在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示。

19、你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样的无穷等比数列的所有项的和必定存在?

20、在三角函数中求一个角时,注意考虑两方面了吗?(先求出某一个三角函数值,再判定角的范围)

21、正弦定理时易忘比值还等于2R。

22、数量积与两个实数乘积的区别:

23、解决线性规划问题的基本步骤是什么?请你注意解题格式和完整的文字表达。(①设出变量,写出目标函数②写出线性约束条件③画出可行域④作出目标函数对应的系列*行线,找到并求出最优解⑦应用题一定要有答。)

24、通径是抛物线的所有焦点弦中最短的弦。(想一想在双曲线中的结论?)

25、在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?椭圆,双曲线二次项系数为零时直线与其只有一个交点,判别式的限制。(求交点,弦长,中点,斜率,对称,存在性问题都在下进行)。

26、你掌握了空间图形在*面上的直观画法吗?(斜二测画法)。

27、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系;

28、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;

29、求概率时,正难则反(根据p1+p2+……+pn=1);

30、注意放回抽样,不放回抽样;

31、在△ABC中,∠C=90°,a=1,c=4,则sinA的值为

32、在△ABC中,若,∠A,∠B为锐角,则∠C的度数是()A、75°B、90°C、105°D、120°

33、已知三边,或两边及其夹角用余弦定理

34、余弦定理对于确定三角形形状非常有用,只需要知道角的余弦值为正,为负,还是为零,就可以确定是钝角。直角还是锐角。

35、导数的概念

36、集合的含义

37、恒成立问题的处理方法:(1)分离参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解;

38、错题本怎么用。和记笔记一样,整理错题不是誊写不是照抄,而是摘抄。你只顾着去采撷问题,就失去了理解和挑选题目的过程,笔记同理,如果老师说什么记什么,那只能说明你这节课根本没听,真正有效率的人,是会把知识简化,把书本读薄的。先学学你能思考到答案的哪一步,学着去偷分。当然,因人而异,如果你觉得还有哪些题需要整理也可以记下来。

39、立几问题的求解分为“作”,“证”,“算”三个环节,你是否只注重了“作”,“算”,而忽视了“证”这一重要环节?

40、二项式系数与展开式某一项的系数易混,第r+1项的二项式系数为。二项式系数最大项与展开式中系数最大项易混。二项式系数最大项为中间一项或两项;展开式中系数最大项的求法要用解不等式组来确定r。

相关内容
相关词条
热门标签
全站热门
当前热门
标签索引

精美图文推荐

上一篇 下一篇
返回首页


文案 | 句子 | 文案 | 成语 | 文案| 句子| 教学反思 | 教学设计 | 合同范本 | 工作报告 | 活动策划鄂ICP备2022017863号-1