位置 > 首页 > 句子 >

数学分析知识点总结 40句菁华

日期:2022-12-03 00:00:00

1、集合与逻辑:集合的逻辑与运算(一般出现在高考卷的第一道选择题)、简易逻辑、充要条件

2、圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用

3、一元二次方程根的情况

4、函数

5、点,线,面

6、角

7、两点之间线段最短

8、两直线*行,内错角相等

9、两直线*行,同旁内角互补

10、概率与统计:概率、分布列、期望、方差、抽样、正态分布

11、实数

12、代数式

13、同角或等角的余角相等——余角=90-角度。

14、直线外一点与直线上各点连接的所有线段中,垂线段最短

15、斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等

16、定理2

17、角的*分线是到角的两边距离相等的所有点的集合

18、推论2等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合,即三线合一;

19、线段的垂直*分线可看作和线段两端点距离相等的所有点的集合

20、*行四边形性质定理1

21、*行四边形性质定理2

22、*行四边形判定定理4

23、矩形判定定理2

24、菱形性质定理2

25、等腰梯形的两条对角线相等

26、等腰梯形判定定理

27、*行于三角形的一边,并且和其他两边相交的直线,

28、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

29、性质定理2

30、性质定理3

31、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)

32、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线

33、①直线L和⊙O相交

34、切线的判定定理

35、正n边形的每个内角都等于(n-2)×180°/n

36、内公切线长=d-(R-r)

37、集合的分类:

38、有限集含有有限个元素的集合

39、无限集含有无限个元素的集合

40、不含任何元素的集合叫做空集,记为Φ


数学分析知识点总结 40句菁华扩展阅读


数学分析知识点总结 40句菁华(扩展1)

——数学分析知识点的总结 40句菁华

1、函数

2、*行公理:经过直线外一点,有且只有一条直线与这条直线*行

3、推论1

4、定理3

5、四边形的外角和等于360°

6、有理数:①整数→正整数,0,负整数;

7、同旁内角互补,两直线*行

8、定理

9、三角形内角和定理:

10、定理2

11、等腰三角形的判定定理

12、多边形内角和定理

13、*行四边形判定定理3

14、矩形判定定理2

15、菱形性质定理2

16、菱形面积=对角线乘积的一半,即S=(a×b)÷2

17、(1)比例的基本性质:如果a:b=c:d,那么ad=bc

18、性质定理3

19、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线

20、垂径定理

21、圆的外切四边形的两组对边的和相等

22、①两圆外离

23、正n边形的面积Sn=pn*rn/2

24、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

25、内公切线长=d-(R-r)

26、数列的通项公式

27、必修课程由5个模块组成:

28、数列:数列的有关概念、等差数列、等比数列、数列求通项、求和

29、排列、组合和概率:排列、组合应用题、二项式定理及其应用

30、概率与统计:概率、分布列、期望、方差、抽样、正态分布

31、数轴:数轴是规定了原点、正方向、单位长度的一条直线。

32、绝对值:

33、有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数—小数> 0,小数—大数< 0。

34、空间中的垂直问题

35、混淆命题的否定与否命题

36、an与Sn关系不清致误

37、不等式性质应用不当致误

38、忽视基本不等式应用条件致误

39、列一元一次方程解应用题:

40、列方程解应用题的常用公式:


数学分析知识点总结 40句菁华(扩展2)

——数学圆知识点总结 40句菁华

1、推论:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

2、推论:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

3、①直线L和⊙O相交d﹤r

4、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线

5、推论:经过圆心且垂直于切线的直线必经过切点

6、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线*分两条切线的夹角

7、推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

8、推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

9、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项

10、定理:

11、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

12、正n边形的面积Sn=pr/2p表示正n边形的周长,r为边心距

13、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此

14、圆有无数条半径,有无数条直径。

15、圆心决定圆的位置,半径决定圆的大小。

16、把圆对折,再对折就能找到圆心。

17、圆是轴对称图形,直径所在的直线是圆的对称轴。圆有无数条对称轴。

18、在同一个圆里,直径的长度是半径的2倍,可以表示为d=2r或r=d/2.

19、圆的周长除以直径的商是一个固定的数,叫做圆周率,用字母表示,计算时通常取3.14.

20、分数乘分数是求一个数的几分之几是多少。

21、反证法

22、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

23、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×n-2180°/n=360°化为n-2k-2=4

24、扇形面积公式:S扇形=n兀R^2/360=LR/2

25、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

26、圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。

27、直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。

28、在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。

29、直线AB与圆O的位置关系(设OPAB于P,则PO是AB到圆心的距离):

30、圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。

31、圆的周长C=2d

32、圆的面积S=πr

33、直线AB与圆O的位置关系(设OP⊥AB于P,则PO是AB到圆心的距离):

34、圆的周长C=2πr=πd

35、切线的性质定理 圆的切线垂直于经过切点的半径

36、推论1 经过圆心且垂直于切线的直线必经过切点

37、圆的外切四边形的两组对边的和相等 外角等于内对角

38、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

39、定理 一条弧所对的圆周角等于它所对的圆心角的一半

40、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径


数学分析知识点总结 40句菁华(扩展3)

——数学知识点总结 40句菁华

1、类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。

2、基本要求:掌握求直线的方法,熟练转化确定直线方向的不同条件(例如:直线方向向量、法向量、斜率、倾斜角等)。熟练判断点与直线、直线与直线的不同位置,能正确求点到直线的距离、两直线的交点坐标及两直线的夹角大小。

3、基本要求:理解曲线的方程与方程的曲线的意义,利用代数方法判断定点是否在曲线

4、重难点:建立数形结合的概念,理解曲线与方程的对应关系,掌握代数研究几何的方法,掌握把已知条件转化为等价的代数表示,通过代数方法解决几何问题。

5、1柱、锥、台、球的结构特征

6、1.3—2.1.4空间中直线与*面、*面与*面之间的位置关系

7、2.1直线与*面*行的判定

8、判断两*面*行的方法有三种:

9、2.3—2.2.4直线与*面、*面与*面*行的性质

10、定理:如果两个*面同时与第三个*面相交,那么它们的交线*行。

11、3.1直线与*面垂直的判定

12、定义

13、两个*面互相垂直的判定定理:一个*面过另一个*面的垂线,则这两个*面垂直。

14、集合的表示:{…}如:{我校的篮球队员},{太*洋,大西洋,印度洋,北冰洋}

15、集合的分类:

16、“包含”关系—子集

17、圆的内部可以看作是圆心的距离小于半径的点的集合

18、圆的外部可以看作是圆心的距离大于半径的点的集合

19、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线

20、推论1:

21、定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

22、定理:一条弧所对的圆周角等于它所对的圆心角的一半

23、推论:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

24、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线*分两条切线的夹角

25、正n边形的每个内角都等于(n-2)×180°/n

26、正三角形面积√3a2/4a表示边长

27、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此

28、直线方程:高考时不单独命题,易和圆锥曲线结合命题

29、圆方程

30、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。

31、子集:若对x∈A都有x∈B,则AB(或AB);

32、三角形中的动点问题:动点沿三角形的边运动,通过全等或相似,探究构成的新图形与原图形的边或角的关系.

33、求出每段的解析式.

34、圆的方程

35、空间中的*行问题

36、判断函数奇偶性忽略定义域致误

37、三角函数的单调性判断致误

38、忽视零向量致误

39、对数列的定义、性质理解错误

40、忽视三视图中的实、虚线致误


数学分析知识点总结 40句菁华(扩展4)

——初中数学知识点总结 100句菁华

1、代数式

2、整式与分式

3、方程与方程组

4、解一元二次方程的步骤:

5、过两点有且只有一条直线

6、同角或等角的补角相等

7、过一点有且只有一条直线和已知直线垂直

8、两直线*行,同位角相等

9、两直线*行,同旁内角互补

10、全等三角形的对应边、对应角相等

11、逆定理

12、四边形的外角和等于360°

13、*行四边形性质定理1

14、矩形判定定理1

15、菱形性质定理1

16、正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角

17、*移的作图步骤和方法:

18、等腰梯形判定定理

19、数轴:数轴是规定了原点、正方向、单位长度的一条直线。

20、*行线等分线段定理

21、*行于三角形的一边,并且和其他两边相交的直线,

22、相似三角形判定定理1

23、混合运算法则:先乘方,后乘除,最后加减。

24、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。若|a|=a,则a≥0;若|a|=-a,则a≤0。

25、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)

26、到已知角的两边距离相等的点的轨迹,是这个角的*分线

27、去括号法则

28、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线

29、整式的运算:

30、直线的性质

31、角的性质

32、多边形:由若干条不在同一条直线上的线段首尾顺次相连组成的封闭*面图形叫做多边形。连接不相邻两个顶点的线段叫做多边形的对角线。

33、各种统计图的特点

34、正数和负数的有关概念

35、在把有理数加减混合运算统一为最简的形式,负数前面的加号可以省略不写.

36、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。

37、列一元一次方程解应用题:

38、正数和负数的有关概念

39、三角形外角的性质

40、两组对边*行的四边形是*行四边形。

41、性质:

42、性质:矩形的四个角都是直角,矩形的对角线相等

43、直角三角形斜边上的中线等于斜边的一半。

44、同类项:所含字母相同,并且相同字母的指数也相同的项。与字母前面的系数(≠0)无关。

45、同类项必须同时满足两个条件:(1)所含字母相同;(2)相同字母的次数相同,二者缺一不可、同类项与系数大小、字母的排列顺序无关

46、对称性:等腰梯形是轴对称图形

47、合并同类项:把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。

48、公式与性质

49、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

50、弧长计算公式:L=n兀R/180

51、如果B=0即直线为Ax+C=0,即x=-C/A,它*行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1

52、多边形与多边形的运动图形问题:把一个三角形或四边形沿一定方向运动经过另一个多边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象.

53、求出每段的解析式.

54、对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

55、互为余角:如果两个角的和是一个直角,这两个角叫做互为余角。

56、推论:1)在同圆或等圆中,相等的圆周角所对的弧相等。

57、人们通常用一条直线上的点表示数,这条直线叫做数轴。

58、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值。

59、两个负数,绝对值大的反而小。

60、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

61、有理数

62、四边形

63、图形的轴对称

64、图形的相似

65、过一点有且只有一条直线和已知直线垂直。

66、同旁内角互补,两直线*行。

67、推论1直角三角形的两个锐角互余。

68、推论2三角形的一个外角等于和它不相邻的两个内角的和。

69、推论3三角形的一个外角大于任何一个和它不相邻的内角。

70、角的*分线是到角的两边距离相等的所有点的集合。

71、推论1等腰三角形顶角的*分线*分底边并且垂直于底边。

72、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)。

73、推论1三个角都相等的三角形是等边三角形。

74、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半。

75、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直*分线上。

76、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直*分线。

77、多边形内角和定理n边形的内角的和等于(n-2)×180°。

78、*行四边形性质定理1*行四边形的对角相等。

79、*行四边形性质定理3*行四边形的对角线互相*分。

80、*行四边形判定定理1两组对角分别相等的四边形是*行四边形。

81、菱形面积=对角线乘积的一半,即S=(a×b)÷2。

82、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点*分,那么这两个图形关于这一点对称。

83、等腰梯形性质定理等腰梯形在同一底上的两个角相等。

84、(1)比例的基本性质:

85、(3)等比性质:

86、*行线分线段成比例定理三条*行线截两条直线,所得的对应线段成比例。

87、性质定理2相似三角形周长的比等于相似比。

88、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线。

89、推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

90、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。

91、①直线L和⊙O相交d﹤r。

92、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。

93、①两圆外离d﹥R+r。

94、定理把圆分成n(n≥3):

95、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形。

96、垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。

97、同位角:(在两条直线的同一旁,第三条直线的同一侧)在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。如:∠1和∠5。

98、两条*行线被第三条直线所截,同旁内角互补。(两直线*行,同旁内角相等)

99、命题的概念:判断一件事情的语句,叫做命题。

100、不等式组的解:几个不等式的解集的公共部分,叫做由它们组成的不等式组的解集。解不等式组就是求它的解集。


数学分析知识点总结 40句菁华(扩展5)

——初中数学知识点总结 50句菁华

1、韦达定理

2、同角或等角的余角相等——余角=90-角度。

3、同位角相等,两直线*行

4、全等三角形的对应边、对应角相等

5、斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等

6、等腰三角形的性质定理

7、直角三角形斜边上的中线等于斜边上的一半

8、逆定理

9、*行四边形性质定理1

10、*行四边形判定定理2

11、(1)比例的基本性质:如果a:b=c:d,那么ad=bc

12、相似三角形判定定理1

13、混合运算法则:先乘方,后乘除,最后加减。

14、生活中的立体图形

15、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

16、添括号法则

17、整式的运算:

18、普查与抽样调查

19、频数直方图

20、一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

21、弧长计算公式:L=n兀R/180——》L=nR

22、等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)

23、合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;

24、线段与多边形的运动图形问题:把一条线段沿一定方向运动经过三角形或四边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象.

25、定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。

26、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。

27、三角形

28、过一点有且只有一条直线和已知直线垂直。

29、定理三角形两边的和大于第三边。

30、推论3三角形的一个外角大于任何一个和它不相邻的内角。

31、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等。

32、定理2到一个角的两边的距离相同的点,在这个角的*分线上。

33、菱形判定定理2对角线互相垂直的*行四边形是菱形。

34、定理1关于中心对称的两个图形是全等的

35、推论2经过三角形一边的中点与另一边*行的直线,必*分第三边。

36、相似三角形判定定理1两角对应相等,两三角形相似(ASA)。

37、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。

38、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。

39、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线。

40、定理一条弧所对的圆周角等于它所对的圆心角的一半。

41、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线。

42、圆的外切四边形的两组对边的和相等。

43、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等。

44、构造法

45、几何变换法

46、运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]分配律)

47、垂线特点:过一点有且只有一条直线与已知直线垂直。

48、两条*行线被第三条直线所截,如果同位角相等,那么这两条直线*行。(同位角相等,两直线*行)

49、*面直角坐标系:在*面内画两条互相垂直,并且有公共原点的数轴。这样我们就说在*面上建立了*面直角坐标系,简称直角坐标系。

50、不等式的解法:


数学分析知识点总结 40句菁华(扩展6)

——七年级下册数学知识点总结归纳 40句菁华

1、倒数 (1)0没有倒数 (2)乘积是1的两个数互为倒数.a、b互为倒数 .

2、立方根

3、正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.

4、乘法

5、单项式中所有字母的指数和叫做单项式的次数。

6、单独一个数或一个字母也是单项式。

7、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

8、单项式的系数是带分数时,应化成假分数。

9、几个单项式的和叫做多项式。

10、多项式中次数最高的项的次数,叫做这个多项式的次数。

11、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。

12、n个相同因式(或因数)a相乘,记作an,读作a的n次方(幂),其中a为底数,n为指数,an的结果叫做幂。

13、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。即(ab)n=anbn。

14、此法则也可以逆用,即:anbn=(ab)n。

15、单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

16、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。

17、多项式与多项式相乘,必须做到不重不漏。相乘时,要按一定的顺序进行,即一个多项式的每一项乘以另一个多项式的每一项。在未合并同类项之前,积的项数等于两个多项式项数的积。

18、多项式的每一项都包含它前面的符号,确定积中每一项的符号时应用“同号得正,异号得负”。

19、运算结果中有同类项的要合并同类项。

20、单项式除以单项式,多项式除以单项式(转换单项式除以单项式)。

21、会判轴对称图形,会根据画对称图形,(或在方格中画)

22、倒数

23、*行公理:经过直线外一点,有且只有一条直线与这条直线*行。

24、*面上不相重合的两条直线之间的位置关系为_______或________

25、必然事件发生的概率为1,记作P(必然事件)=1;

26、求几何概率:

27、三角形→由不在同一直线上的三条线段首尾顺次相接所组成的图形。

28、在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线。

29、三角形中最多有1个直角或钝角,最多有3个锐角,最少有2个锐角。

30、任意一个三角形两角*分线的夹角=90+第三角的一半。

31、钝角三角形有两条高在外部。

32、两边及它们的夹角对应相等的两个三角形全等。

33、全等三角形的判定

34、两角和其中一角的对边对应相等的两个三角形全等,简写为“角角边”或“AAS”。

35、做三角形(3种做法:已知两边及夹角、已知两角及夹边、已知三边、已知两角及一边可以转化为已知已知两角及夹边)。

36、利用三角形全等测距离;

37、随着自变量x的逐渐增加(大),因变量y逐渐减小(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而减小)。

38、利用关系式:首先求出关系式,然后直接代入求值即可。

39、分裂再凑整数加法;

40、比如;77+8=85,先把“8”分裂成“3”和“5”;那么就是77+3+5=85;


数学分析知识点总结 40句菁华(扩展7)

——交通安全知识点总结 40句菁华

1、不准在道路中间招呼车辆.

2、不强行上下车,做到先下后上,候车要排队,按秩序上车;下车后要等车辆开走后再行走,如要穿越马路,一定要确保安全的情况下穿行。

3、不乘坐超载车辆,不乘坐无载客许可证、运动证的车辆。

4、雨天大雾想一想,打开雾灯车速降;夜间行车想一想,注意标志和灯光;长途驾驶想一想,劳逸结合不能忘。

5、遇到障碍想一想,提前处理别惊慌;

6、候车要在站台上,骑车不进汽车道。

7、大意招祸小心得安

8、过街要走横道线,或走天桥地下道;走路要走人行道,不在路上嬉戏闹。

9、交通安全进万家出入*安你我他

10、为了行车保安全,不与司机闲话聊。

11、大哥大方向盘同时使用最危险

12、各班要按要求准时参加。(第二节下课后由体育委员领队带凳子到大堂集中)

13、舞台音响(xxx)

14、行人须在人行道内行走,没有人行道的要靠路边行走;

15、机动车在行驶中不准将身体的任何部位伸出窗外;

16、黑车货车不能上,人身安全没保障。

17、工具用后请归位,以免用时无处寻;

18、路口要看信号灯,红灯停止绿灯行。

19、六要:乘坐汽车要系好安全带;乘坐摩托车、电动自行车要戴好安全头盔;横穿道路要走斑马线;走路要走人行道;骑车要在非机动车道内;要自觉做到红灯停、绿灯行、黄灯亮时不抢行。

20、交通法规人人遵守,文明社区家家幸福。

21、无证开车,作茧自缚。

22、步步小心,安全是金。

23、遵守交通法规,关隘生命旅程。

24、道路通行见形象,红绿灯前看修养。

25、要想车祸不上身,交通法规牢记深。

26、交通法规记心中,人身安全在手中。

27、让道于人,安全于己。

28、不讲卫生要生病,不讲安全要送命。

29、马路就像老虎口,不留神就没活口。

30、放学要列队行走

31、走路注意力要集中

32、严禁追车扒车

33、儿童乘车要坐安全座椅

34、不乘坐超员客车、校车

35、出门衣着的颜色要鲜艳

36、遵守交通行为规则,知道什么是正确的什么是错误。

37、机动车不得超过限速标志标明的最高时速

38、机动车行经人行横道时,应当减速行驶

39、禁止货运机动车载客客运机动车不得载货

40、最高时速低于公里的机动车不得进高速公路


数学分析知识点总结 40句菁华(扩展8)

——化学知识点总结 40句菁华

1、溶液的颜色:凡含cu2+的溶液呈蓝色;凡含fe2+的溶液呈浅绿色;凡含fe3+的溶液呈棕黄色,其余溶液一般不无色。(高锰酸钾溶液为紫红色)

2、有毒的,气体:co液体:ch3oh固体:nano2、 cuso4(可作杀菌剂,与熟石灰混合配成天蓝色的粘稠状物质——波尔多液)

3、大部分酸及酸性氧化物能溶于水,(酸性氧化物+水→酸)大部分碱性氧化物不溶于水,能溶的有:氧化钡、氧化钾、氧化钙、氧化钠(碱性氧化物+水→碱)

4、熔点最小的金属是汞。

5、人体中含量最多的元素是氧。

6、最早发现电子的是英国的汤姆生;

7、铁的氧化物有三种,其化学式:为(1)feo、(2)fe2o3、(3) fe3o4。

8、溶液的特征有三个:(1)均一性;(2)稳定性;(3)混合物。

9、常用于炼铁的铁矿石有三种:(1)赤铁矿(主要成分为fe2o3);(2)磁铁矿(fe3o4);(3)菱铁矿(feco3)。13、炼钢的主要设备有三种:转炉、电炉、*炉。

10、应记住的三种黑色氧化物是:氧化铜、二氧化锰、四氧化三铁。

11、与铜元素有关的三种蓝色:(1)硫酸铜晶体;(2)氢氧化铜沉淀;(3)硫酸铜溶液。

12、取用药品有"三不"原则:(1)不用手接触药品;(2)不把鼻子凑到容器口闻气体的气味;(3)不尝药品的味道。

13、溶液配制的三步骤:计算、称量(量取)、溶解。

14、生物细胞中含量最多的前三种元素:o、c、h 。

15、电解水的实验现象:

16、金属活动性顺序:

17、产生原因:化学键断裂——吸热化学键形成——放热

18、判断*衡的依据

19、K只与__温度(T)___有关,与反应物或生成物的浓度无关。

20、对于多原子分子,键有极性,分子不一定有极性,如二氧化碳、甲烷等是非极性分子。

21、固体不一定都是晶体,如玻璃是非晶态物质,再如塑料、橡胶等。

22、原子核内一般是中子数≥质子数,但普通氢原子核内是质子数≥中子数。

23、金属元素原子最外层电子数较少,一般≤3,但ⅣA、ⅤA族的金属元素原子最外层有4个、5个电子。

24、同周期元素中,从左到右,元素气态氢化物的稳定性一般是逐渐增强,但第二周期中CH4很稳定,1000℃以上才分解。

25、电解精炼铜时,粗铜作阳极,精铜作阴极,硫酸铜溶液作电解液。

26、单质晶体一定不会是离子晶体。

27、化合物形成的晶体一定不是金属晶体。

28、分子间力一定含在分子晶体内,其余晶体一定不存在分子间力(除石墨外)。

29、既能与酸又能与碱反应的物质

30、常温下不能共存的气体:H2S和SO2、H2S和Cl2、HI和Cl2、NH3和HCl、NO和O2、F2和H2。

31、中和热概念:在稀溶液中,酸跟碱发生中和反应而生成1molH2O,这时的反应热叫中和热。

32、酸性氧化物(属于非金属氧化物):凡能跟碱起反应,生成盐和水的氧化物

33、结晶水合物:含有结晶水的物质(如:Na2CO3 .10H2O、CuSO4 . 5H2O)

34、定义:一种或几种物质分散到另一种物质里,形成均一的、稳定的混合物,叫溶液。

35、内因(主要因素)

36、化学*衡状态:一定条件(恒温、恒容或恒压)下的可逆反应里,正反应和逆反应的速率相等,反应混合物(包括反应物和生成物)中各组分的浓度保持不变的状态。

37、化学*衡状态的特征

38、“惰性气体”对化学*衡的影响

39、勒夏特列原理

40、往某溶液中逐滴加入稀盐酸,出现浑浊的物质:


数学分析知识点总结 40句菁华(扩展9)

——数学初中知识点总结 40句菁华

1、解一元二次方程的步骤:

2、点,线,面

3、同角或等角的补角相等

4、直线外一点与直线上各点连接的所有线段中,垂线段最短

5、同位角相等,两直线*行

6、两直线*行,同旁内角互补

7、定理

8、推论1

9、推论3

10、定理1

11、定理3

12、勾股定理

13、矩形判定定理1

14、正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角

15、*行线等分线段定理

16、梯形中位线定理

17、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d

18、*行线分线段成比例定理

19、判定定理2

20、性质定理1

21、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)

22、圆是定点的距离等于定长的点的集合

23、垂径定理

24、圆的外切四边形的两组对边的和相等

25、①两圆外离

26、正n边形的每个内角都等于(n-2)×180°/n

27、正n边形的面积Sn=pnxrn/2

28、弧长计算公式:L=n兀R/180——》L=nR

29、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

30、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

31、三角形外角的性质

32、两组对边*行的四边形是*行四边形。

33、定义:有一个角是直角的*行四边形叫做矩形

34、对称性:矩形是轴对称图形也是中心对称图形。

35、s菱=争6(n、6分别为对角线长)

36、对称性:菱形是轴对称图形也是中心对称图形

37、等腰梯形的性质:等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等

38、多边形外角和定理:

39、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

40、扇形面积公式:S扇形=n兀R^2/360=LR/2

相关内容
相关词条
热门标签
全站热门
当前热门
标签索引

精美图文推荐

上一篇 下一篇
返回首页


文案 | 句子 | 文案 | 成语 | 文案| 句子| 教学反思 | 教学设计 | 合同范本 | 工作报告 | 活动策划鄂ICP备2022017863号-1