日期:2022-12-03 00:00:00
1、球 r-半径 ;d-直径 V=4/3d2/6
2、球缺 h-球缺高;r-球半径;a-球缺底半径
3、两点之间线段最短
4、同角或等角的余角相等
5、定理三角形两边的和大于第三边
6、推论1直角三角形的两个锐角互余
7、推论2三角形的一个外角等于和它不相邻的两个内角的和
8、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等
9、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)
10、推论1等腰三角形顶角的*分线*分底边并且垂直于底边
11、直角三角形斜边上的中线等于斜边上的一半
12、定理线段垂直*分线上的点和这条线段两个端点的距离相等
13、线段的垂直*分线可看作和线段两端点距离相等的所有点的集合
14、推论夹在两条*行线间的*行线段相等
15、*行四边形判定定理1两组对角分别相等的四边形是*行四边形
16、菱形面积=对角线乘积的一半,即S=(a×b)÷2
17、正方形性质定理1正方形的四个角都是直角,四条边都相等
18、推论2经过三角形一边的中点与另一边*行的直线,必*分第三边
19、(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d
20、推论*行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
21、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
22、判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)
23、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
24、性质定理2相似三角形周长的比等于相似比
25、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值
26、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线
27、推论2圆的两条*行弦所夹的弧相等
28、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
29、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线
30、推论1经过圆心且垂直于切线的直线必经过切点
31、圆的外切四边形的两组对边的和相等
32、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
33、正三角形面积√3a/4
34、内公切线长=d-(R-r)外公切线长=d-(R+r)
35、(1)几何图形:我们把从实物中抽象出的各种图形称为几何图形。
36、直线,射线,线段
37、角
38、方位角
39、合理安排,保持清醒。
40、解答题规范有序。
数学立体几何知识点 40句菁华扩展阅读
数学立体几何知识点 40句菁华(扩展1)
——数学知识点 50句菁华
1、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10)
2、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。
3、乘方的定义:
4、由绝对值的定义可知:
5、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值向乘。任何数同0相乘,都得0。
6、在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;
7、被减数—减数=差
8、除到被除数的哪一位就在哪一位上面写商;
9、万级的数要按个级的读法来读,再在后面加上一个“万”字;
10、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。
11、什么是面积?
12、乘法各部分之间的关系:
13、什么是自然数?
14、什么是单名数?
15、什么样的数能被3整除?
16、什么是质因数?
17、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。
18、分数乘分数的计算方法是:用分子相乘的积做分子,用分母相乘的积作分母。(分子乘分子,分母乘分母)
19、在理解的基础上,掌握整数乘法的口算方法;培养类推迁移的能力和口算的能力;
20、学生要明确已知条件和问题,利用学习长方形周长的知识经验,知识迁移到怎样求出正方形的周长,就是把正方形的四条边长加起来,还可以用边长乘4。
21、过两点有且只有一条直线
22、同角或等角的补角相等
23、推论 三角形两边的差小于第三边
24、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
25、*行四边形判定定理1 两组对角分别相等的四边形是*行四边形
26、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值
27、特征:①两个运动的物体一般同时不同地(或不同时不同地)出发作相向运动;
28、同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商;
29、出勤率
30、列方程解答应用题的步骤
31、设未知数,列比例式
32、对于函数f(x),如果对于定义域内任意一个x,都有f(-x)=-f(x),那么f(x)为奇函数;
33、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。
34、养成良好的学习数学习惯。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
35、函数零点定理使用不当致误
36、函数的最值在实际问题中的
37、必修课程由5个模块组成:
38、排列、组合和概率:排列、组合应用题、二项式定理及其应用
39、导数:导数的概念、求导、导数的应用
40、定理:一条直线与一个*面*行,则过这条直线的任一*面与此*面的交线与该直线*行。
41、定义
42、当被*方数小数点每向右移动三位,它的立方根小数点向右移动一位.
43、一个数与0相加,仍得这个数。
44、函数
45、定理1
46、(1)比例的基本性质:如果a:b=c:d,那么ad=bc
47、*行线分线段成比例定理
48、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线
49、圆的外切四边形的两组对边的和相等
50、列方程解应用题的常用公式:
数学立体几何知识点 40句菁华(扩展2)
——数学圆知识点总结 40句菁华
1、推论:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
2、推论:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
3、①直线L和⊙O相交d﹤r
4、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线
5、推论:经过圆心且垂直于切线的直线必经过切点
6、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线*分两条切线的夹角
7、推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
8、推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项
9、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项
10、定理:
11、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
12、正n边形的面积Sn=pr/2p表示正n边形的周长,r为边心距
13、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此
14、圆有无数条半径,有无数条直径。
15、圆心决定圆的位置,半径决定圆的大小。
16、把圆对折,再对折就能找到圆心。
17、圆是轴对称图形,直径所在的直线是圆的对称轴。圆有无数条对称轴。
18、在同一个圆里,直径的长度是半径的2倍,可以表示为d=2r或r=d/2.
19、圆的周长除以直径的商是一个固定的数,叫做圆周率,用字母表示,计算时通常取3.14.
20、分数乘分数是求一个数的几分之几是多少。
21、反证法
22、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。
23、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×n-2180°/n=360°化为n-2k-2=4
24、扇形面积公式:S扇形=n兀R^2/360=LR/2
25、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
26、圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。
27、直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。
28、在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。
29、直线AB与圆O的位置关系(设OPAB于P,则PO是AB到圆心的距离):
30、圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。
31、圆的周长C=2d
32、圆的面积S=πr
33、直线AB与圆O的位置关系(设OP⊥AB于P,则PO是AB到圆心的距离):
34、圆的周长C=2πr=πd
35、切线的性质定理 圆的切线垂直于经过切点的半径
36、推论1 经过圆心且垂直于切线的直线必经过切点
37、圆的外切四边形的两组对边的和相等 外角等于内对角
38、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
39、定理 一条弧所对的圆周角等于它所对的圆心角的一半
40、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径
数学立体几何知识点 40句菁华(扩展3)
——数学知识点总结 40句菁华
1、类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。
2、基本要求:掌握求直线的方法,熟练转化确定直线方向的不同条件(例如:直线方向向量、法向量、斜率、倾斜角等)。熟练判断点与直线、直线与直线的不同位置,能正确求点到直线的距离、两直线的交点坐标及两直线的夹角大小。
3、基本要求:理解曲线的方程与方程的曲线的意义,利用代数方法判断定点是否在曲线
4、重难点:建立数形结合的概念,理解曲线与方程的对应关系,掌握代数研究几何的方法,掌握把已知条件转化为等价的代数表示,通过代数方法解决几何问题。
5、1柱、锥、台、球的结构特征
6、1.3—2.1.4空间中直线与*面、*面与*面之间的位置关系
7、2.1直线与*面*行的判定
8、判断两*面*行的方法有三种:
9、2.3—2.2.4直线与*面、*面与*面*行的性质
10、定理:如果两个*面同时与第三个*面相交,那么它们的交线*行。
11、3.1直线与*面垂直的判定
12、定义
13、两个*面互相垂直的判定定理:一个*面过另一个*面的垂线,则这两个*面垂直。
14、集合的表示:{…}如:{我校的篮球队员},{太*洋,大西洋,印度洋,北冰洋}
15、集合的分类:
16、“包含”关系—子集
17、圆的内部可以看作是圆心的距离小于半径的点的集合
18、圆的外部可以看作是圆心的距离大于半径的点的集合
19、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线
20、推论1:
21、定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
22、定理:一条弧所对的圆周角等于它所对的圆心角的一半
23、推论:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
24、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线*分两条切线的夹角
25、正n边形的每个内角都等于(n-2)×180°/n
26、正三角形面积√3a2/4a表示边长
27、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此
28、直线方程:高考时不单独命题,易和圆锥曲线结合命题
29、圆方程
30、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。
31、子集:若对x∈A都有x∈B,则AB(或AB);
32、三角形中的动点问题:动点沿三角形的边运动,通过全等或相似,探究构成的新图形与原图形的边或角的关系.
33、求出每段的解析式.
34、圆的方程
35、空间中的*行问题
36、判断函数奇偶性忽略定义域致误
37、三角函数的单调性判断致误
38、忽视零向量致误
39、对数列的定义、性质理解错误
40、忽视三视图中的实、虚线致误
数学立体几何知识点 40句菁华(扩展4)
——初中数学知识点总结 100句菁华
1、代数式
2、整式与分式
3、方程与方程组
4、解一元二次方程的步骤:
5、过两点有且只有一条直线
6、同角或等角的补角相等
7、过一点有且只有一条直线和已知直线垂直
8、两直线*行,同位角相等
9、两直线*行,同旁内角互补
10、全等三角形的对应边、对应角相等
11、逆定理
12、四边形的外角和等于360°
13、*行四边形性质定理1
14、矩形判定定理1
15、菱形性质定理1
16、正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角
17、*移的作图步骤和方法:
18、等腰梯形判定定理
19、数轴:数轴是规定了原点、正方向、单位长度的一条直线。
20、*行线等分线段定理
21、*行于三角形的一边,并且和其他两边相交的直线,
22、相似三角形判定定理1
23、混合运算法则:先乘方,后乘除,最后加减。
24、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。若|a|=a,则a≥0;若|a|=-a,则a≤0。
25、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)
26、到已知角的两边距离相等的点的轨迹,是这个角的*分线
27、去括号法则
28、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线
29、整式的运算:
30、直线的性质
31、角的性质
32、多边形:由若干条不在同一条直线上的线段首尾顺次相连组成的封闭*面图形叫做多边形。连接不相邻两个顶点的线段叫做多边形的对角线。
33、各种统计图的特点
34、正数和负数的有关概念
35、在把有理数加减混合运算统一为最简的形式,负数前面的加号可以省略不写.
36、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。
37、列一元一次方程解应用题:
38、正数和负数的有关概念
39、三角形外角的性质
40、两组对边*行的四边形是*行四边形。
41、性质:
42、性质:矩形的四个角都是直角,矩形的对角线相等
43、直角三角形斜边上的中线等于斜边的一半。
44、同类项:所含字母相同,并且相同字母的指数也相同的项。与字母前面的系数(≠0)无关。
45、同类项必须同时满足两个条件:(1)所含字母相同;(2)相同字母的次数相同,二者缺一不可、同类项与系数大小、字母的排列顺序无关
46、对称性:等腰梯形是轴对称图形
47、合并同类项:把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。
48、公式与性质
49、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
50、弧长计算公式:L=n兀R/180
51、如果B=0即直线为Ax+C=0,即x=-C/A,它*行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1
52、多边形与多边形的运动图形问题:把一个三角形或四边形沿一定方向运动经过另一个多边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象.
53、求出每段的解析式.
54、对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
55、互为余角:如果两个角的和是一个直角,这两个角叫做互为余角。
56、推论:1)在同圆或等圆中,相等的圆周角所对的弧相等。
57、人们通常用一条直线上的点表示数,这条直线叫做数轴。
58、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值。
59、两个负数,绝对值大的反而小。
60、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
61、有理数
62、四边形
63、图形的轴对称
64、图形的相似
65、过一点有且只有一条直线和已知直线垂直。
66、同旁内角互补,两直线*行。
67、推论1直角三角形的两个锐角互余。
68、推论2三角形的一个外角等于和它不相邻的两个内角的和。
69、推论3三角形的一个外角大于任何一个和它不相邻的内角。
70、角的*分线是到角的两边距离相等的所有点的集合。
71、推论1等腰三角形顶角的*分线*分底边并且垂直于底边。
72、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)。
73、推论1三个角都相等的三角形是等边三角形。
74、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半。
75、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直*分线上。
76、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直*分线。
77、多边形内角和定理n边形的内角的和等于(n-2)×180°。
78、*行四边形性质定理1*行四边形的对角相等。
79、*行四边形性质定理3*行四边形的对角线互相*分。
80、*行四边形判定定理1两组对角分别相等的四边形是*行四边形。
81、菱形面积=对角线乘积的一半,即S=(a×b)÷2。
82、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点*分,那么这两个图形关于这一点对称。
83、等腰梯形性质定理等腰梯形在同一底上的两个角相等。
84、(1)比例的基本性质:
85、(3)等比性质:
86、*行线分线段成比例定理三条*行线截两条直线,所得的对应线段成比例。
87、性质定理2相似三角形周长的比等于相似比。
88、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线。
89、推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
90、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。
91、①直线L和⊙O相交d﹤r。
92、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。
93、①两圆外离d﹥R+r。
94、定理把圆分成n(n≥3):
95、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形。
96、垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。
97、同位角:(在两条直线的同一旁,第三条直线的同一侧)在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。如:∠1和∠5。
98、两条*行线被第三条直线所截,同旁内角互补。(两直线*行,同旁内角相等)
99、命题的概念:判断一件事情的语句,叫做命题。
100、不等式组的解:几个不等式的解集的公共部分,叫做由它们组成的不等式组的解集。解不等式组就是求它的解集。
数学立体几何知识点 40句菁华(扩展5)
——五年级上册数学知识点 60句菁华
1、(P23)在实际应用中,小数除法所得的商也可以根据需要用"四舍五入"法保留一定的小数位数求出商的近似数。
2、从不同位置观察同一个物体,所看到的图形有可能一样,也有可能不一样。
3、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
4、计算小数乘法末尾对齐,按整数乘法法则进行计算。
5、用计算器来验算
6、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:2.6÷1.3表示已知两个因数的积2.6与其中的一个因数1.3,求另一个因数的运算。
7、把下面的数量关系补充完整。
8、*行四边形面积=底×高(s*=ah)
9、三角形面积=底×高÷2(s三=ah÷2)
10、正方形周长=边长×4 C = 4 a
11、梯形下底=梯形面积×2÷高-上底 b = 2 S ÷ h - a
12、1*方千米=100公顷=1000000*方米
13、把一个物体或一个图形*均分成几份,取其中的几份,就是这个物体或图形的几分之几。
14、①分子相同,分母小的分数反而大,分母大的分数反而小。
15、小数乘整数(P2、3):意义--求几个相同加数的和的简便运算。
16、(P11)小数四则运算顺序跟整数是一样的。
17、运算定律和性质:
18、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数( 0除外),商不变。②除数不变,被除数扩大,商随着扩大。被除数不变,除数缩小,商扩大。 ③被除数不变,除数缩小,商扩大。
19、圆柱的体积=底面积×高:V=ShV=πrh=π(d÷2)h=π(C÷2÷π)h。
20、循环小数的表示方法:一种是用省略号表示,要写出两个完整的循环节,后面标上省略号。如:0。3636…… 1。587587……另一种是简写的方法:即只写出一组循环节,然后在循环节的第一个数字和最后一个数上面点上圆点。如:12。
21、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。
22、1厘米的长度里有(10)小格,每小格的长度(相等),都是(1)毫米。
23、长方形的面积=长×宽:S=ab。
24、梯形的面积=(上底+下底)×高÷2:S=(a+b)h÷2。
25、圆的周长=圆周率×直径=圆周率×半径×2:c=πd=2πr。
26、长方形的面积=长×宽S=ab
27、正方形的面积=边长×边长S=a.a= a
28、长方体的表面积=(长×宽+长×高+宽×高) ×2公式:S=(a×b+a×c+b×c)×2
29、长方体的体积=长×宽×高公式:V = abh
30、正方体的表面积=棱长×棱长×6公式:S=6a2
31、长方体(或正方体)的体积=底面积×高公式:V = abh
32、对*移和旋转现象的初步认识:
33、三角形面积公式推导:旋转 *行四边形可以转化成一个长方形; 两个完全一样的三角形可以拼成一个*行四边形, 长方形的长相当于*行四边形的底; *行四边形的底相当于三角形的底; 长方形的宽相当于*行四边形的高; *行四边形的高相当于三角形的高; 长方形的面积等于*行四边形的面积, *行四边形的面积等于三角形面积的2倍,因为长方形面积=长宽,所以*行四边形面积=底高。 因为*行四边形面积=底高,所以三角形面积=底高2
34、梯形面积公式推导:旋转
35、(P45)在含有字母的式子里,字母中间的乘号可以记作"·",也可 以省略不写。
36、所有的方程都是等式,但等式不一定都是方程。
37、方程的检验过程:方程左边=……
38、三角形、梯形的第二种推导方法老师已讲,自己看书
39、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一 般水*更合适。
40、5 4 0 0 1
41、3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9
42、封闭图形一周的长度,就是它的周长。
43、在做题时,我们要注意中间的0,因为是连续退位的,所以从百位退1到十位当10后,还要从十位退1当10,借给个位,那么十位只剩下9,而不是10。(两个三位数相加的和:可能是三位数,也有可能是四位数。)
44、公式被减数=减数+差和=加数+另一个加数
45、公式
46、分数:把单位1*均分成若干份,表示这样的一份或几份的数,叫做分数。
47、自然数按因数的个数来分:质数、合数、1.
48、方程一定是等式;等式不一定是方程。等式>方程
49、等式两边同时加上或减去同一个数,所得结果仍然是等式。这是等式的性质。
50、有两个数都是合数,又是互质数,它们的最小公倍数是90,这两个数是( 9和10 )。
51、几个数的( 最大公因 )数的所有( 因 )数,都是这几个数的公因数;几个数的( 最小公倍 )数的所有( 倍 )数,都是这几个数的公倍数。
52、用若干个完全一样的小正方体,拼成一个较大的正方体,至少需这样的小正方体( 8 )个,此时所拼成的较大正方体的表面积是原来每个小正方体表面积的( (2×2×6)÷(1×1×6)=4 )倍。
53、两个完全一样的正方体拼成一个长方体,长方体的表面积是40*方厘米,每个小正方体的表面积是多少*方厘米?
54、某工厂有煤5吨,如果每天烧 吨,这些煤可烧( 5÷ =5÷0.2=25 )天;如果每天烧这些煤的 ,这些煤可烧( 5 )天。
55、数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右分别为列数和行数,即“先列后行”。
56、车轮滚动一周前进的路程就是车轮的周长。
57、常用的3.14的倍数:
58、圆的面积公式:S圆=r2。圆的面积是半径*方的倍。
59、大小两个圆比较,半径的倍数=直径的倍数=周长的倍数,
60、求圆环的面积一般是用外圆的面积减去内圆的面积,还可以利用乘法分配律进行简便计算。S圆环=r2=(R2-r2)
数学立体几何知识点 40句菁华(扩展6)
——八年级上册数学知识点 50句菁华
1、全等图形:能够完全重合的两个图形就是全等图形。
2、全等图形的性质:全等多边形的对应边、对应角分别相等。
3、全等三角形:三角形是特殊的多边形,因此,全等三角形的对应边、对应角分别相等。同样,如果两个三角形的边、角分别对应相等,那么这两个三角形全等。
4、三角形全等的判定公理及推论有:
5、直角三角形全等的判定
6、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)
7、推论1等腰三角形顶角的*分线*分底边并且垂直于底边
8、推论3等边三角形的各角都相等,并且每一个角都等于60°
9、推论2有一个角等于60°的等腰三角形是等边三角形
10、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
11、直角三角形斜边上的中线等于斜边上的一半
12、推论任意多边的外角和等于360°
13、推论夹在两条*行线间的*行线段相等
14、定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心*分
15、等腰梯形性质定理等腰梯形在同一底上的两个角相等
16、*行线等分线段定理如果一组*行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等
17、把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴。折叠后重合的点是对应点,叫做对称点
18、线段垂直*分线上的点与这条线段的两个端点的距离相等
19、运用公式法
20、数a的相反数是-a,一个正实数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0
21、边边边公理(SSS) 有三边对应相等的两个三角形全等
22、等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
23、推论3 等边三角形的各角都相等,并且每一个角都等于60°
24、推论 2 有一个角等于60°的等腰三角形是等边三角形
25、正多边形:在*面内,各个角都相等,各条边都相等的多边形叫正多边形。
26、因式分解
27、全等三角形的性质:全等三角形对应边相等、对应角相等。
28、全等三角形的判定:三边相等(SSS)、两边和它们的夹角相等(SAS)、两角和它们的夹边(ASA)、两角和其中一角的对边对应相等(AAS)、斜边和直角边相等的两直角三角形(HL)。
29、轴对称图形的对称轴,是任何一对对应点所连线段的垂直*分线。
30、等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)
31、若两个变量x,y间的关系式可以表示成y=kx+b(k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。
32、正比列函数y=kx(k≠0)的图象是一条经过原点的直线,当k>0时,直线y=kx经过第一、三象限,y随x的增大而增大,当k<0时,直线y=kx经过第二、四象限,y随x的增大而减小,在一次函数y=kx+b中:k="">0时,y随x的增大而增大;当k<0时,y随x的增大而减小。
33、通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.
34、通分和约分都是依据分式的基本×质进行变形,其共同点是保持分式的值不变.
35、通分的关键:确定几个分式的公分母.
36、对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分.
37、二者之间存在着从属关系。2、存在条件相同。3、0的算术*方根与*方根都是0
38、分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
39、正比例函数和一次函数的概念
40、二元一次方程
41、*均数
42、众数
43、中位数
44、中位数与众数
45、函数的三种表示法及其优缺点
46、由函数解析式画其图像的一般步骤
47、全面调查:考察全体对象的调查方式叫做全面调查、
48、两组对角分别相等的四边形是*行四边形;
49、四条边相等的四边形是菱形。S菱形=1/2×ab(a、b为两条对角线)
50、实数的相反数:
数学立体几何知识点 40句菁华(扩展7)
——小学数学三年级知识点 50句菁华
1、认识整千数(记忆:10个一千是一万)
2、数的大小比较:
3、公式被减数=减数+差
4、余数:在整数的除法中,只有能整除与不能整除两种情况。当不能整除时,就产生余数,取余数运算:指整数除法中被除数未被除尽部分。例如27除以6,商数为4,余数为3。
5、余数的性质:余数有如下一些重要性质(a,b,c均为自然数)
6、余数与除数的关系:
7、除法各部分之间的关系:
8、一个物体、一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。把单位“1”*均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数,叫做分数单位。一个分数的分母是几,它的分数单位就是几分之一。
9、分子比分母小的分数叫做真分数;分子比分母大或者分子和分母相等的分数叫做假分数。
10、分数与除法的关系:被除数相当于分数的分子,除数相当于分数的分母。被除数÷除数=除数(被除数)如果用a表示被除数,b表示除数,可以写成a÷b=b(a)(b≠0)
11、把带分数化成假分数的方法:把整数乘分母加分子作为假分数的分子,分母不变。
12、估算:18×22,可以先把因数看成整十、整百的数,再去计算。→(可以把一个因数看成近似数,也可以把两个因数都同时看成近似数。)
13、凡是问够不够,能不能等的题目,都要三大步:①计算、②比较、③答题。→别忘了比较这一步。
14、多位数除以一位数(判断商是几位数):
15、认识年、月、日。认识*年和闰年。
16、5、6月第一季度;7、8、9月第一季度;10、11、12月第一季度;
17、大月:有31天的月份是大月。大月有1月、3月、5月、7月、8月、10月、12月。
18、小月:有30天的月份是大月。小月有4月、6月、9月、11月。
19、*年:2月有28天的月份是*年,*年有365天。
20、闰年:2月有29天的月份是*年,*年有365天。
21、*年和闰年的判断方法:一般情况下,公历年份除以4没有余数的是闰年,公历年份是整百数的,必须除以400没有余数才是闰年。
22、质量单位:吨、千克、克,每相邻两个单位之间的`进率都是1000。
23、从1个蓝色的玻璃球和10个白色的玻璃球中任意摸出一个,摸到()玻璃球可能性更小一些。
24、一共17人,如果每组3人,可以分成几组?还剩几人?(4分)
25、估算。(先求出多位数的近似数,再进行计算。如497×7≈3500)
26、三位数乘一位数:积有可能是三位数,也有可能是四位数。
27、(关于“大约)应用题:
28、计算300×2,可以算()个百乘2得()个百,也就是()。
29、13×2和2×13的积相等。()
30、一个工程的修一条水渠,每天修70米,修了9天修完。这条水渠长多少米?
31、正方形、长方形数属于特殊的*行四边形。
32、钟面上有(12)个数字,(12)个大格,(60)个小格;每两个数间是(1)个大格,也就是(5)个小格。
33、1小时=()分1分=()秒
34、80分=()时()分160秒=()分()秒
35、利民超市上午9:00营业,晚上8:00关门。这一天的营业时间是()小时。
36、分针跑一圈就是1小时。()
37、把一个整体*均分得的份数越多,它的每一份所表示的数就越小。
38、把正方形纸*均分成4份,每份是这个正方形的()分之(),写作(—)。
39、7个1/10是(—),4个1/7是(—)。
40、一本书有21页,*均每天看这本书的3页,占全书的()
41、妈妈买了12个苹果,给哥哥7个,给妹妹5个。哥哥得这些苹果的()(),妹妹得这些苹果的()()。
42、59是5个()()37里面有()个()1-()10=610
43、钟面上有3根针,它们是(时针)、(分针)、(秒针),其中走得最快的是(秒针),走得最慢的是(时针)。
44、时针走1大格,分针正好走(1)圈,分针走1圈是(60)分,也就是(1)小时。时针走1圈,分针要走(12)圈。
45、时针从一个数走到下一个数是(1小时)。分针从一个数走到下一个数是(5分钟)。秒针从一个数走到下一个数是(5秒钟)。
46、公式。(每两个相邻的时间单位之间的进率是60)
47、求一个数的几倍是多少用乘法:这个数×倍数=这个数的几倍
48、① 0和任何数相乘都得0;② 1和任何不是0的数相乘还得原来的数。
49、长方形和正方形是特殊的*行四边形。
50、封闭图形一周的长度,就是它的周长。
数学立体几何知识点 40句菁华(扩展8)
——数学初中全部重要知识点总结 40句菁华
1、一元二次方程的二次函数的关系
2、一元二次方程的解法
3、韦达定理
4、同角或等角的补角相等
5、*行公理:经过直线外一点,有且只有一条直线与这条直线*行
6、内错角相等,两直线*行
7、同旁内角互补,两直线*行
8、推论3
9、角边角公理(
10、斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等
11、角的*分线是到角的两边距离相等的所有点的集合
12、推论2等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合,即三线合一;
13、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
14、逆定理
15、勾股定理
16、矩形性质定理2
17、菱形判定定理2
18、等腰梯形的两条对角线相等
19、梯形中位线定理
20、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b
21、*行线分线段成比例定理
22、性质定理3
23、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)
24、圆的内部可以看作是圆心的距离小于半径的点的集合
25、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线
26、到已知角的两边距离相等的点的轨迹,是这个角的*分线
27、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线
28、垂径定理
29、切线长定理
30、正三角形面积√3a^2/4
31、圆的有关性质
32、菱形的性质:⑴矩形具有*行四边形的一切性质;
33、公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。
34、提取公因式步骤:①确定公因式。②确定商式③公因式与商式写成积的形式。
35、联系:二者之间存在着从属关系;存在条件相同;0的算术*方根与*方根都是0
36、含根号式子的意义:表示a的*方根,表示a的算术*方根,表示a的负的*方根。
37、有理数减法法则:减去一个数,等于加上这个数的相反数;即a—b=a+(—b)。
38、有理数乘法法则:
39、有理数乘方的法则:
40、乘方的定义:
数学立体几何知识点 40句菁华(扩展9)
——数学五年级知识点 40句菁华
1、分数:把单位“1”*均分成若干份,表示这样的一份或几份的数,叫做分数。
2、分母:表示*均分的份数。分子:表示取出的份数。
3、带分数化成假分数:用带分数的整数部分乘分母加分子做分子,分母不变。
4、把一个合数用质因数相乘的形式表示出来,叫做分解质因数。如12=2×2×3
5、几个数公有的因数叫做这几个数的公因数。其中的一个,叫做它们的公因数。
6、通分:把异分母分数分别化成同分母分数,叫通分。通常用最小公倍数做分数的分母较简便。
7、探索小数乘法、除法的计算方法,能正确进行笔算,并能对其中的算理做出合理的解释;
8、会用“四舍五入”法截取积是小数的近似值;培养从不同角度观察,分析事物的能力;
9、205≈2 (保留整数)
10、不用算的先抄下来
11、分数与除法
12、真分数<1≤假分数
13、分数化简包括两步:一是约分;二是把假分数化成整数或带分数。
14、两个数互质的特殊判断方法:
15、方程的意义
16、列方程解应用题的一般步骤
17、数量关系式
18、根据运算定律写出:
19、甲乙两数的和是171.6,乙数的小数点向右移动一位,就等于甲数。甲数是( );乙数是( )。
20、一块梯形田的面积是90*方米,上底是7米,下底是11米,它的高是几米?
21、服装厂做一件男上衣用2.5米布料,现在有42米布料,可以做多少件这样的男上衣?
22、15匹马9天喂了175.5千克饲料,每匹马一天要多少千克饲料?
23、明明买了6本练习本,兰兰买了3本同样的练习本,明明比兰兰多花1.35元。
24、乘法交换律:axb=bxa
25、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
26、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。
27、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。
28、任意两个奇数的*方差是2、4、8的倍数。
29、钟面上最长最细的针是秒针。秒针走一小格的时间是1秒。
30、常用时间单位:时、分、秒。
31、时间单位:时、分、秒,每相邻两个个单位之间的进率都是60。
32、动手操作,思维拓展
33、用计算器来验算
34、长方体的体积=长×宽×高公式:V = abh
35、正方体的表面积=棱长×棱长×6公式:S=6a2
36、对*移和旋转现象的初步认识:
37、小数化成分数:看小数的位数,小数表示是十分之几,百分之几,千分之几……的数,所以可以直接写成分母是10、100、1000……的分数,在化简。
38、运动场的跑道,通常1圈是400米,2圈半是1000米。
39、常用长度单位:米、分米、厘米、毫米、千米。
40、被减数-减数=差被减数-差=减数差+减数=被减数
数学立体几何知识点 40句菁华(扩展10)
——高考数学知识点总结 40句菁华
1、进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解。
2、简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?
3、用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。
4、“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?
5、在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示。
6、两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a
7、解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?
8、在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。
9、你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样的无穷等比数列的所有项的和必定存在?
10、三垂线定理及其逆定理你记住了吗?你知道三垂线定理的关键是什么吗?(一面、四线、三垂直、立柱即面的垂线是关键)一面四直线,立柱是关键,垂直三处见
11、求两条异面直线所成的角、直线与*面所成的角和二面角时,如果所求的角为90°,那么就不要忘了还有一种求角的方法即用证明它们垂直的方法。
12、两条异面直线所成的角的范围:0°<α≤90°< p="">
13、d=R+r两圆外切;两圆的圆心距离之和等于两圆的半径之和。
14、d=R—r两圆内切;两圆的圆心距离之和等于两圆的半径之差。
15、有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。
16、如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题)。这几种基本应用你掌握了吗?
17、三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?
18、在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示。
19、你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样的无穷等比数列的所有项的和必定存在?
20、在三角函数中求一个角时,注意考虑两方面了吗?(先求出某一个三角函数值,再判定角的范围)
21、正弦定理时易忘比值还等于2R。
22、数量积与两个实数乘积的区别:
23、解决线性规划问题的基本步骤是什么?请你注意解题格式和完整的文字表达。(①设出变量,写出目标函数②写出线性约束条件③画出可行域④作出目标函数对应的系列*行线,找到并求出最优解⑦应用题一定要有答。)
24、通径是抛物线的所有焦点弦中最短的弦。(想一想在双曲线中的结论?)
25、在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?椭圆,双曲线二次项系数为零时直线与其只有一个交点,判别式的限制。(求交点,弦长,中点,斜率,对称,存在性问题都在下进行)。
26、你掌握了空间图形在*面上的直观画法吗?(斜二测画法)。
27、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系;
28、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;
29、求概率时,正难则反(根据p1+p2+……+pn=1);
30、注意放回抽样,不放回抽样;
31、在△ABC中,∠C=90°,a=1,c=4,则sinA的值为
32、在△ABC中,若,∠A,∠B为锐角,则∠C的度数是()A、75°B、90°C、105°D、120°
33、已知三边,或两边及其夹角用余弦定理
34、余弦定理对于确定三角形形状非常有用,只需要知道角的余弦值为正,为负,还是为零,就可以确定是钝角。直角还是锐角。
35、导数的概念
36、集合的含义
37、恒成立问题的处理方法:(1)分离参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解;
38、错题本怎么用。和记笔记一样,整理错题不是誊写不是照抄,而是摘抄。你只顾着去采撷问题,就失去了理解和挑选题目的过程,笔记同理,如果老师说什么记什么,那只能说明你这节课根本没听,真正有效率的人,是会把知识简化,把书本读薄的。先学学你能思考到答案的哪一步,学着去偷分。当然,因人而异,如果你觉得还有哪些题需要整理也可以记下来。
39、立几问题的求解分为“作”,“证”,“算”三个环节,你是否只注重了“作”,“算”,而忽视了“证”这一重要环节?
40、二项式系数与展开式某一项的系数易混,第r+1项的二项式系数为。二项式系数最大项与展开式中系数最大项易混。二项式系数最大项为中间一项或两项;展开式中系数最大项的求法要用解不等式组来确定r。
初中数学知识点总结 100句菁华数学知识点 100句菁华中考数学知识点 60句菁华数学七年级知识点 60句菁华中考数学知识点 50句菁华初中数学常考的知识点 50句菁华初一数学上册知识点总结 50句菁华初中数学全册知识点 50句菁华初中数学知识点总结 50句菁华小学数学知识点 50句菁华数学知识点 50句菁华数学必修一知识点 50句菁华数学七年级知识点 50句菁华数学的知识点总结 50句菁华高中数学知识点总结 50句菁华高等数学知识点总结 50句菁华初中数学重要知识点总结 40句菁华初一数学知识点归纳 40句菁华数学分析知识点的总结 40句菁华数学初中全部重要知识点总结 40句菁华数学中考圆的知识点 40句菁华数学五年级知识点 40句菁华数学圆知识点总结 40句菁华数学知识点总结 40句菁华数学初中知识点总结 40句菁华数学分析知识点总结 40句菁华高二数学知识点归纳 40句菁华高三数学知识点总结 40句菁华高考数学知识点总结 40句菁华
圣诞节简短祝福语 400句菁华简短的七夕祝福短信 200句菁华感悟人生的个性签名 150句菁华优美的早安问候语语录 100句菁华思念爱人的句子 100句菁华高考英语阅读高频词 100句菁华彼此珍惜对方的句子 60句菁华愿往后余生的暖心句子 60句菁华语文的标语 60句菁华下雨感慨说说心情 50句菁华人生经历感悟经典说说 50句菁华八年级期末操行评语 50句菁华厚积薄发的励志句子 50句菁华庆生日的唯美句子 50句菁华形容友谊的句子摘录 50句菁华感情受伤的句子 50句菁华最新中考的祝福语 50句菁华父亲节班级祝福语 50句菁华
给闺蜜的春节祝福语 50句菁华运动会开幕式入场词模板 50句菁华下雪时发的朋友圈文案 40句菁华中考前简短祝福语 40句菁华今日大寒节气的优美句子 40句菁华人生感悟的一段话摘抄 40句菁华关于4月的祝福语 40句菁华对妈妈说的祝福语 40句菁华对自己说晚安的说说 40句菁华小学生恩师毕业的赠言 40句菁华描写星尘优美语句大全 40句菁华沙雕元宵节朋友圈文案 40句菁华狼性的霸气口号 40句菁华独木舟经典句子 40句菁华简短伤感的句子 40句菁华2021年企业拜年词简短 30句菁华2021年中秋节祝福语说说句子大全 30句菁华2021微信经典说说 30句菁华